Evaluation of the Aircraft Distribution in Satellite Spotbeams

  • Christoph Petersen
  • Maciej Mühleisen
  • Andreas Timm-Giel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8115)


Upcoming inflight entertainment and other onboard data services request broadband data connections during long- and short-haul flights all over the world. To cope with this amount of traffic, especially over oceanic areas where no ground infrastructure is available, satellite systems offer broadband satellite links for avionic purpose.

This work analyzes the distribution of aircraft traffic for selected satellite spotbeams for intercontinental, rural and urban scenarios. For this, the statistic properties of the number of arriving and departing aircraft within a time interval are analyzed. Our results show, that the law of small number and therefore a Poisson distribution is only applicable to areas with low air traffic. Aircraft arrivals to- and departures from satellite spotbeams can be modeled using the negative binomial distribution, as proven by presented results.


Poisson Distribution Negative Binomial Distribution Time Instance Interarrival Time Urban Scenario 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Gramaglia, M., Serrano, P., Hernandez, J.A., Calderon, M., Bernardos, C.J.: New insights from the analysis of free flow vehicular traffic in highways. In: 2011 IEEE International Symposium on World of Wireless, Mobile and Multimedia Networks (WoWMoM), pp. 1–9 (2011),
  2. 2.
    Wisitpongphan, N., Bai, F., Mudalige, P., Sadekar, V., Tonguz, O.: Routing in sparse vehicular ad hoc wireless networks. IEEE Journal on Selected Areas in Communications 25(8), 1538–1556 (2007), CrossRefGoogle Scholar
  3. 3.
    Medina, D., Hoffmann, F., Rossetto, F., Rokitansky, C.-H.: A geographic routing strategy for north atlantic in-flight internet access via airborne mesh networking. IEEE/ACM Transactions on Networking (TON) 20(4), 1231–1244 (2012)CrossRefGoogle Scholar
  4. 4.
    Medina, D., Hoffmann, F., Ayaz, S., Rokitansky, C.H.: Feasibility of an aeronautical mobile ad hoc network over the north atlantic corridor. In: 5th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, SECON 2008, pp. 109–116 (2008),
  5. 5.
    Flightradar24 real time flight tracking service,
  6. 6.
    Fossa, C.E., Raines, R.A., Gunsch, G.H., Temple, M.A.: An overview of the IRIDIUM (r) low earth orbit (LEO) satellite system. In: Proceedings of the IEEE 1998 National Aerospace and Electronics Conference, NAECON 1998, pp. 152–159 (1998),
  7. 7.
    Walke, B.: Mobilfunknetze und ihre Protokolle 2, pp. 433–493. Springer DE (2001)Google Scholar
  8. 8.
    Hofmann, M.: Uber zusammengesetzte poisson-prozesse und ihre anwendungen in der unfallversicherung. Ph.D. dissertation, Diss. Math. ETH Zurich, Nr. 2511, 0000. Ref.: Saxer, W., Korref.: Nolfi, P. (1955)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Christoph Petersen
    • 1
  • Maciej Mühleisen
    • 1
  • Andreas Timm-Giel
    • 1
  1. 1.Institute of Communication NetworksHamburgGermany

Personalised recommendations