Visualization Support for Multi-criteria Decision Making in Geographic Information Retrieval

  • Chandan Kumar
  • Wilko Heuten
  • Susanne Boll
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8127)

Abstract

The goal of geographic information retrieval (GIR) is to provide information about geo-entities to end-users and assist their spatial decision making. In the current means of GIR interfaces, users could easily visualize the geo-entities of interest on a map interface via sequential querying or browsing of individual categories. However, there are several decision making scenarios when the user needs to explore and investigate the geospatial database with multiple criteria of interests, which is not well supported by the sequential querying or browsing functionality of current GIR interfaces. There is a need for more sophisticated visual interfaces to enable end-users in discovering knowledge hidden in multi-dimensional geospatial databases. In this paper we discuss some of the HCI issues in realizing such multi-criteria decision making scenario based on the user requirement analysis. To tackle the human centered aspects we propose different heatmap based interfaces to support multi-criteria visualizations in GIR, i.e., to facilitate the knowledge based exploration of geospatial databases with less information overload.

Keywords

Local Search Geographic Information Retrieval Geovisualization User Interfaces User-Centered Design Heatmaps Grids Voronoi diagram 

References

  1. 1.
    Ahlers, D., Boll, S.: Location-based Web search. In: Scharl, A., Tochtermann, K. (eds.) The Geospatial Web. Springer (2007)Google Scholar
  2. 2.
    Ahlers, D., Boll, S.: Retrieving Address-based Locations from the Web. In: GIR 2008: Proceedings of the 5th International Workshop on Geographic Information Retrieval. ACM, New York (2008)Google Scholar
  3. 3.
    Ahlers, D., Boll, S.: Adaptive Geospatially Focused Crawling. In: CIKM 2009. ACM (2009)Google Scholar
  4. 4.
    Aurenhammer, F.: Voronoi diagrams: a survey of a fundamental geometric data structure. ACM Comput. Surv. 23(3), 345–405 (1991)CrossRefGoogle Scholar
  5. 5.
    Dykes, J., MacEachren, A.M., Kraak, M.-J.: Exploring Geovisualization. International Cartographic Association Series. Elsevier (2005)Google Scholar
  6. 6.
    Fisher, D.: Hotmap: Looking at geographic attention. IEEE Transactions on Visualization and Computer Graphics 13(6), 1184–1191 (2007)CrossRefGoogle Scholar
  7. 7.
    Greene, R., Devillers, R., Luther, J.E., Eddy, B.G.: GIS-based multiple-criteria decision analysis. Geography Compass 5(6) (2011)Google Scholar
  8. 8.
    Harrower, M.A., Brewer, C.A.: Colorbrewer.org: An online tool for selecting color schemes for maps. The Cartographic Journal 40(1) (2003)Google Scholar
  9. 9.
    Holzinger, A.: Usability engineering methods for software developers. Communications of the ACM 48(1), 71–74 (2005)CrossRefGoogle Scholar
  10. 10.
    Keim, D.A., Kohlhammer, J., Ellis, G., Mansmann, F.: Mastering The Information Age - Solving Problems with Visual Analytics. Eurographics (2010)Google Scholar
  11. 11.
    Kumar, C.: Relevance and ranking in geographic information retrieval. In: Proceedings of the Fourth BCS-IRSG Conference on Future Directions in Information Access, pp. 2–7. British Computer Society (2011)Google Scholar
  12. 12.
    Lam, H., Bertini, E., Isenberg, P., Plaisant, C., Carpendale, S.: Empirical studies in information visualization: Seven scenarios. IEEE Transactions on Visualization and Computer Graphics 18, 1520–1536 (2012)CrossRefGoogle Scholar
  13. 13.
    Lloyd, D.: Evaluating human-centered approaches for geovisualization. PhD thesis, City University London (September 2009)Google Scholar
  14. 14.
    Longo, L., Kane, B.: A novel methodology for evaluating user interfaces in health care. In: 2011 24th International Symposium on Computer-Based Medical Systems (CBMS), pp. 1–6. IEEE (2011)Google Scholar
  15. 15.
    Longo, L., Rusconi, F., Noce, L., Barrett, S.: The importance of human mental workload in web design. In: WEBIST, pp. 403–409 (2012)Google Scholar
  16. 16.
    MacEachren, A.M., DiBiase, D.: Animated maps of aggregate data: Conceptual and practical problems. CaGIS 18(4) (1991)Google Scholar
  17. 17.
    Maguire, M.: Methods to support human-centred design. Int. J. Hum.-Comput. Stud. 55(4), 587–634 (2001)MATHCrossRefGoogle Scholar
  18. 18.
    Makropoulos, C., Butler, D.: Spatial ordered weighted averaging: incorporating spatially variable attitude towards risk in spatial multi-criteria decision-making. Environmental Modelling & Software 21(1), 69–84 (2006)CrossRefGoogle Scholar
  19. 19.
    Moere, A.V., Tomitsch, M., Wimmer, C., Christoph, B., Grechenig, T.: Evaluating the effect of style in information visualizations. IEEE Transactions on Visualization and Computer Graphics 18, 2739–2748 (2012)CrossRefGoogle Scholar
  20. 20.
    Nivala, A.-M., Sarjakoski, L.T., Sarjakoski, T.: User-centred design and development of a mobile map service. In: Hauska, H., Tveite, H. (eds.) Proceedings of the Scandinavian Research Conference on Geographical Information Science, ScanGIS 2005, Stockholm, Sweden, June 13-15. pp. 109–123 (2005)Google Scholar
  21. 21.
    Rinner, C., Heppleston, A.: The spatial dimensions of multi-criteria evaluation – case study of a home buyer’s spatial decision support system. In: Raubal, M., Miller, H.J., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2006. LNCS, vol. 4197, pp. 338–352. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Rinner, C., Raubal, M.: Personalized multi-criteria decision strategies in location-based decision support. JGIS 10 (2004)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2013

Authors and Affiliations

  • Chandan Kumar
    • 1
  • Wilko Heuten
    • 2
  • Susanne Boll
    • 1
  1. 1.University of OldenburgOldenburgGermany
  2. 2.OFFIS - Institute for Information TechnologyOldenburgGermany

Personalised recommendations