Abstract
Scientific articles are predominantly stored in digital document formats, which are optimised for presentation, but lack structural information. This poses challenges to access the documents’ content, for example for information retrieval. We have developed a processing pipeline that makes use of unsupervised machine learning techniques and heuristics to detect the logical structure of a PDF document. Our system uses only information available from the current document and does not require any pre-trained model. Starting from a set of contiguous text blocks extracted from the PDF file, we first determine geometrical relations between these blocks. These relations, together with geometrical and font information, are then used categorize the blocks into different classes. Based on this logical structure we finally extract the body text and the table of contents of a scientific article. We evaluate our pipeline on a number of datasets and compare it with state-of-the-art document structure analysis approaches.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mao, S., Rosenfeld, A., Kanungo, T.: Document structure analysis algorithms: A literature survey. Proceedings of SPIE 5010(1), 197–207 (2003)
Kern, R., Jack, K., Hristakeva, M., Granitzer, M.: TeamBeam - Meta-Data Extraction from Scientific Literature. In: 1st International Workshop on Mining Scientific Publications (2012)
Peng, F., McCallum, A.: Accurate Information Extraction from Research Papers using Conditional Random Fields. In: HLTNAACL 2004, vol. 2004, pp. 329–336 (2004)
Councill, I.G., Giles, C.L., Kan, M.Y.: ParsCit: An open-source CRF Reference String Parsing Package. In: Proceedings of LREC, vol. 2008, pp. 661–667. Citeseer, European Language Resources Association, ELRA (2008)
Luong, M.T., Nguyen, T.D., Kan, M.Y.: Logical structure recovery in scholarly articles with rich document features. International Journal of Digital Library Systems 1(4), 1–23 (2011)
Ramakrishnan, C., Patnia, A., Hovy, E., Burns, G.A.: Layout-Aware Text Extraction from Full-text PDF of Scientific Articles. Source Code for Biology and Medicine 7(1), 7 (2012)
Gao, L., Tang, Z., Lin, X., Liu, Y., Qiu, R., Wang, Y.: Structure extraction from PDF-based book documents. In: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries, pp. 11–20 (2011)
Lin, X.: Header and Footer Extraction by Page-Association. Proceedings of SPIE 5010, 164–171 (2002)
Granitzer, M., Hristakeva, M., Knight, R., Jack, K., Kern, R.: A Comparison of Layout based Bibliographic Metadata Extraction Techniques. In: WIMS 2012 - International Conference on Web Intelligence, Mining and Semantics, pp. 19:1–19:8. ACM, New York (2012)
Liu, Y., Mitra, P., Giles, C.L.: Identifying table boundaries in digital documents via sparse line detection. In: Proceeding of the 17th ACM Conference on Information and Knowledge Mining, CIKM 2008, pp. 1311–1320. ACM Press (2008)
Aiello, M., Monz, C., Todoran, L., Worring, M.: Document understanding for a broad class of documents. International Journal on Document Analysis and Recognition 5(1), 1–16 (2002)
Malerba, D., Ceci, M., Berardi, M.: Machine learning for reading order detection in document image understanding. Machine Learning in Document Analysis, 45–69 (2008)
Tkaczyk, D., Czeczko, A., Rusek, K.: GROTOAP: ground truth for open access publications. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 381–382 (2012)
Tkaczyk, D., Bolikowski, L., Czeczko, A., Rusek, K.: A Modular Metadata Extraction System for Born-Digital Articles. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 11–16 (March 2012)
Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance between Trees and Related Problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klampfl, S., Kern, R. (2013). An Unsupervised Machine Learning Approach to Body Text and Table of Contents Extraction from Digital Scientific Articles. In: Aalberg, T., Papatheodorou, C., Dobreva, M., Tsakonas, G., Farrugia, C.J. (eds) Research and Advanced Technology for Digital Libraries. TPDL 2013. Lecture Notes in Computer Science, vol 8092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40501-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-642-40501-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40500-6
Online ISBN: 978-3-642-40501-3
eBook Packages: Computer ScienceComputer Science (R0)