Skip to main content

An Unsupervised Machine Learning Approach to Body Text and Table of Contents Extraction from Digital Scientific Articles

  • Conference paper
Research and Advanced Technology for Digital Libraries (TPDL 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8092))

Included in the following conference series:

Abstract

Scientific articles are predominantly stored in digital document formats, which are optimised for presentation, but lack structural information. This poses challenges to access the documents’ content, for example for information retrieval. We have developed a processing pipeline that makes use of unsupervised machine learning techniques and heuristics to detect the logical structure of a PDF document. Our system uses only information available from the current document and does not require any pre-trained model. Starting from a set of contiguous text blocks extracted from the PDF file, we first determine geometrical relations between these blocks. These relations, together with geometrical and font information, are then used categorize the blocks into different classes. Based on this logical structure we finally extract the body text and the table of contents of a scientific article. We evaluate our pipeline on a number of datasets and compare it with state-of-the-art document structure analysis approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Mao, S., Rosenfeld, A., Kanungo, T.: Document structure analysis algorithms: A literature survey. Proceedings of SPIE 5010(1), 197–207 (2003)

    Article  Google Scholar 

  2. Kern, R., Jack, K., Hristakeva, M., Granitzer, M.: TeamBeam - Meta-Data Extraction from Scientific Literature. In: 1st International Workshop on Mining Scientific Publications (2012)

    Google Scholar 

  3. Peng, F., McCallum, A.: Accurate Information Extraction from Research Papers using Conditional Random Fields. In: HLTNAACL 2004, vol. 2004, pp. 329–336 (2004)

    Google Scholar 

  4. Councill, I.G., Giles, C.L., Kan, M.Y.: ParsCit: An open-source CRF Reference String Parsing Package. In: Proceedings of LREC, vol. 2008, pp. 661–667. Citeseer, European Language Resources Association, ELRA (2008)

    Google Scholar 

  5. Luong, M.T., Nguyen, T.D., Kan, M.Y.: Logical structure recovery in scholarly articles with rich document features. International Journal of Digital Library Systems 1(4), 1–23 (2011)

    Article  Google Scholar 

  6. Ramakrishnan, C., Patnia, A., Hovy, E., Burns, G.A.: Layout-Aware Text Extraction from Full-text PDF of Scientific Articles. Source Code for Biology and Medicine 7(1), 7 (2012)

    Article  Google Scholar 

  7. Gao, L., Tang, Z., Lin, X., Liu, Y., Qiu, R., Wang, Y.: Structure extraction from PDF-based book documents. In: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries, pp. 11–20 (2011)

    Google Scholar 

  8. Lin, X.: Header and Footer Extraction by Page-Association. Proceedings of SPIE 5010, 164–171 (2002)

    Article  Google Scholar 

  9. Granitzer, M., Hristakeva, M., Knight, R., Jack, K., Kern, R.: A Comparison of Layout based Bibliographic Metadata Extraction Techniques. In: WIMS 2012 - International Conference on Web Intelligence, Mining and Semantics, pp. 19:1–19:8. ACM, New York (2012)

    Google Scholar 

  10. Liu, Y., Mitra, P., Giles, C.L.: Identifying table boundaries in digital documents via sparse line detection. In: Proceeding of the 17th ACM Conference on Information and Knowledge Mining, CIKM 2008, pp. 1311–1320. ACM Press (2008)

    Google Scholar 

  11. Aiello, M., Monz, C., Todoran, L., Worring, M.: Document understanding for a broad class of documents. International Journal on Document Analysis and Recognition 5(1), 1–16 (2002)

    Article  MATH  Google Scholar 

  12. Malerba, D., Ceci, M., Berardi, M.: Machine learning for reading order detection in document image understanding. Machine Learning in Document Analysis, 45–69 (2008)

    Google Scholar 

  13. Tkaczyk, D., Czeczko, A., Rusek, K.: GROTOAP: ground truth for open access publications. In: Proceedings of the 12th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 381–382 (2012)

    Google Scholar 

  14. Tkaczyk, D., Bolikowski, L., Czeczko, A., Rusek, K.: A Modular Metadata Extraction System for Born-Digital Articles. In: 2012 10th IAPR International Workshop on Document Analysis Systems, pp. 11–16 (March 2012)

    Google Scholar 

  15. Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance between Trees and Related Problems. SIAM Journal on Computing 18(6), 1245–1262 (1989)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klampfl, S., Kern, R. (2013). An Unsupervised Machine Learning Approach to Body Text and Table of Contents Extraction from Digital Scientific Articles. In: Aalberg, T., Papatheodorou, C., Dobreva, M., Tsakonas, G., Farrugia, C.J. (eds) Research and Advanced Technology for Digital Libraries. TPDL 2013. Lecture Notes in Computer Science, vol 8092. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40501-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40501-3_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40500-6

  • Online ISBN: 978-3-642-40501-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics