Hoptrees: Branching History Navigation for Hierarchies

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8119)


Designing software for exploring hierarchical data sets is challenging because users can easily become lost in large hierarchies. We present a novel interface, the hoptree, to assist users with navigating large hierarchies. The hoptree preserves navigational history and context and allows one-click navigation to recently-visited locations. We describe the design of hoptrees and an implementation that we created for a tree exploration application. We discuss the potential for hoptrees to be used in a wide variety of hierarchy navigation scenarios. Through a controlled experiment, we compared the effectiveness of hoptrees to a breadcrumb navigation interface. Study participants overwhelmingly preferred the hoptree, with improved time-on-task with no difference in error rates.


Navigation tree visualization hierarchy breadcrumbs visual interfaces usability 


  1. 1.
    Schulz, H.-J.: Treevis. net: A Tree Visualization Reference. IEEE CG & A 31, 11–15 (2011)Google Scholar
  2. 2.
    Bartram, L., Ho, A., Dill, J., Henigman, F.: The continuous zoom: A constrained fisheye technique for viewing and navigating large information spaces. In: Proc. UIST 1995, pp. 207–215. ACM (1995)Google Scholar
  3. 3.
    Blanch, R., Lecolinet, E.: Browsing zoomable treemaps: structure-aware multi-scale navigation techniques. IEEE TVCG 13, 1248–1253 (2007)Google Scholar
  4. 4.
    Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill, J., Dubs, S., Roseman, M.: Navigating hierarchically clustered networks through fisheye and full-zoom methods. ACM ToCHI 3, 162–188 (1996)CrossRefGoogle Scholar
  5. 5.
    Lamping, J., Rao, R., Pirolli, P.: A focus+context technique based on hyperbolic geometry for visualizing large hierarchies. In: Proc. CHI 1995, pp. 401–408. ACM (1995)Google Scholar
  6. 6.
    Heer, J., Card, S.K.: DOITrees revisited: scalable, space-constrained visualization of hierarchical data. In: Proc. AVI 2004, pp. 421–424. ACM (2004)Google Scholar
  7. 7.
    Plaisant, C., Grosjean, J., Bederson, B.B.: SpaceTree: supporting exploration in large node link tree, design evolution and empirical evaluation. In: Proc. INFOVIS 2002, pp. 57–64. IEEE (2002)Google Scholar
  8. 8.
    Instone, K.: Location, path and attribute breadcrumbs. 2002 Information Architecture Summit, pp. 16–17 (2002)Google Scholar
  9. 9.
    Rogers, B.L., Chaparro, B.: Breadcrumb navigation: Further investigation of usage. Usability News 5 (2003)Google Scholar
  10. 10.
    Hull, S.: Influence of training and exposure on the usage of breadcrumb navigation. Usability News 6 (2004)Google Scholar
  11. 11.
    Teng, H.: Location breadcrumbs for navigation: An exploratory study (2005)Google Scholar
  12. 12.
    Blustein, J., Ahmed, I., Instone, K.: An evaluation of look-ahead breadcrumbs for the WWW. In: Proc. HYPERTEXT 2005, pp. 202–204. ACM, New York (2005)Google Scholar
  13. 13.
    Heer, J., Mackinlay, J., Stolte, C., Agrawala, M.: Graphical histories for visualization: Supporting analysis, communication, and evaluation. IEEE TVCG 14, 1189–1196 (2008)Google Scholar
  14. 14.
    Shrinivasan, Y.B., Van Wijk, J.J.: Supporting the analytical reasoning process in information visualization. In: Proc. CHI 2008, pp. 1237–1246. ACM (2008)Google Scholar
  15. 15.
    Kreuseler, M., Nocke, T., Schumann, H.: A History Mechanism for Visual Data Mining. In: Proc. INFOVIS 2004, pp. 49–56. IEEE (2004)Google Scholar
  16. 16.
    Ayers, E.Z., Stasko, J.T.: Using graphic history in browsing the World Wide Web. In: Uchikawa, Y., Furuhashi, T. (eds.) WWW 1995. LNCS, vol. 1152, pp. 1–8. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  17. 17.
    Hightower, R.R., Ring, L.T., Helfman, J.I., Bederson, B.B., Hollan, J.D.: Graphical multiscale Web histories: a study of padprints. In: Proc. HYPERTEXT 1998. ACM (1998)Google Scholar
  18. 18.
    Cockburn, A., Greenberg, S.: Issues of page representation and organisation in web browser’s revisitation tools. In: Proc. OZCHI 1999 (1999)Google Scholar
  19. 19.
    Rosvall, M., Bergstrom, C.T.: Multilevel compression of random walks on networks reveals hierarchical organization in large integrated systems. PLoS ONE 6, e18209 (2011)Google Scholar
  20. 20.
    Kaye, J.: “Jofish”: Some statistical analyses of CHI. In: Proc. CHI EA 2009. ACM, New York (2009)Google Scholar
  21. 21.
    Belmonte, N.G.: The JavaScript InfoVis Toolkit,
  22. 22.
    Song, H., Kim, B., Lee, B., Seo, J.: A comparative evaluation on tree visualization methods for hierarchical structures with large fan-outs. In: Proc. CHI 2010, p. 223. ACM Press, New York (2010)Google Scholar
  23. 23.
    Stasko, J., Catrambone, R., Guzdial, M., Mcdonald, K.: An evaluation of space-filling information visualizations for depicting hierarchical structures. International Journal of Human-Computer Studies 53, 663–694 (2000)zbMATHCrossRefGoogle Scholar
  24. 24.
    Wolfinger, R., Tobias, R., Sall, J.: Mixed models: a future direction. In: Proc. SAS UGI 1991, pp. 1380–1388 (1991)Google Scholar
  25. 25.
    Schuster, C., Von Eye, A.: The Relationship of ANOVA Models with Random Effects and Repeated Measurement Designs. Journal of Adolescent Research 16, 205–220 (2001)CrossRefGoogle Scholar
  26. 26.
    Otter, M., Johnson, H.: Lost in hyperspace: metrics and mental models. Interacting with Computers 13, 1–40 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.University of Washington SeattleUSA

Personalised recommendations