On-Line Sketch Recognition Using Direction Feature

  • Wei Deng
  • Lingda Wu
  • Ronghuan Yu
  • Jiazhe Lai
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8119)


Sketch recognition is widely used in pen-based interaction, especially as the increasing popularity of devices with touch screens. It can enhance human-computer interaction by allowing a natural/free form of interaction. The main challenging problem is the variability in hand drawings. This paper presents an on-line sketch recognition method based on the direction feature. We also present two feature representations to train a classifier. We support our case by experimental results obtained from the NicIcon database. A recognition rate of 97.95% is achieved, and average runtime is 97.6ms using a Support Vector Machine classifier.


Sketched symbol recognition NicIcon database multi-stroke shapes 


  1. 1.
    Hammond, T., Davis, R.: LADDER, a sketching language for user interface developers. Computer & Graphics 29(4), 518–532 (2005)CrossRefGoogle Scholar
  2. 2.
    Lee, W., Kara, L.B., Stahovich, T.F.: An Efficient Graph-Based Recognition for Hand-Drawn Symbols. Computers & Graphics 31, 554–567 (2007)CrossRefGoogle Scholar
  3. 3.
    Ouyang, T.Y., Davis, R.: A visual approach to sketch symbol recognition. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 2009) (2009)Google Scholar
  4. 4.
    Almazan, J., Fornes, A., Valveny, E.: A non-rigid appearance model for shape description and recognition. Pattern Recognition 45, 3105–3113 (2012)CrossRefGoogle Scholar
  5. 5.
    Escalera, S., Fornes, A., et al.: Blurred shape model for binary and grey-level symbol recognition. Pattern Recognition Letters 30, 1424–1433 (2009)CrossRefGoogle Scholar
  6. 6.
    Eitz, M., Hays, J., Alexa, M.: How do humans sketch object? ACM Transactions on Graphics. In: Proc. SIGGRAPH (2012)Google Scholar
  7. 7.
    Willems, D., Niels, R., Gerven, M.V., et al.: Iconic and multi-stroke gesture recognition. Pattern Recognition 42, 3303–3312 (2009)zbMATHCrossRefGoogle Scholar
  8. 8.
    Delaye, A., Anquetil, E.: HBF49 feature set: A first unified baseline for online symbol recognition. Pattern Recognition 46, 117–130 (2013)CrossRefGoogle Scholar
  9. 9.
    Fujisawa, H.: Forty years of research in character and document recognition—an industrial perspective. Pattern Recognition 41, 2435–2446 (2008)CrossRefGoogle Scholar
  10. 10.
    Liu, C.L., Nakashima, K., Saho, H., et al.: Handwritten digit recognition: investigation of normalization and feature extraction techniques. Pattern Recognition 37, 265–279 (2004)zbMATHCrossRefGoogle Scholar
  11. 11.
    Niels, R., Willems, D., Vuurpijl, L.: The NicIcon database of handwritten icons. In: 11th International Conference on Frontiers in Handwriting Recognition (ICFHR 2008), Montreal, Canada, August 19-21 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Wei Deng
    • 1
  • Lingda Wu
    • 1
  • Ronghuan Yu
    • 1
  • Jiazhe Lai
    • 1
  1. 1.Academy of EquipmentBeijingChina

Personalised recommendations