Abstract
System level understanding of the repetitive cycle of cell growth and division is crucial for disclosing many unknown principles of biological organisms. The deterministic or stochastic approach – when deployed separately – are not sufficient to study such cell regulation due to the complexity of the reaction network and the existence of reactions at different time scales. Thus, an integration of both approaches is advisable to study such biochemical networks. In this paper we show how Generalised Hybrid Petri Nets can be used to intuitively represent and simulate the eukaryotic cell cycle. Our model captures intrinsic as well as extrinsic noise and deploys stochastic as well as deterministic reactions. Additionally, marking-dependent arc weights are biologically motivated and introduced to Snoopy – a tool for animating and simulating Petri nets in various paradigms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Chen, K., Calzone, L., Csikasz-Nagy, A., Cross, F., Novak, B., Tyson, J.: Integrative analysis of cell cycle control in budding yeast. Mol. Biol. Cel. 5(8), 3841–3862 (2004)
Fujita, S., Matsui, M., Matsuno, H., Miyano, S.: Modeling and simulation of fission yeast cell cycle on hybrid functional Petri net. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences E87-A(11), 2919–2927 (2004)
Gilbert, D., Heiner, M.: From Petri nets to differential equations - an integrative approach for biochemical network analysis. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 181–200. Springer, Heidelberg (2006)
Gillespie, D.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22(4), 403–434 (1976)
Gillespie, D.: Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry 58(1), 35–55 (2007)
Haseltine, E., Rawlings, J.: Approximate simulation of coupled fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys. 117(15), 6959–6969 (2002)
Heiner, M., Herajy, M., Liu, F., Rohr, C., Schwarick, M.: Snoopy – a unifying Petri net tool. In: Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 398–407. Springer, Heidelberg (2012)
Heiner, M., Gilbert, D., Donaldson, R.: Petri nets for systems and synthetic biology. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016, pp. 215–264. Springer, Heidelberg (2008)
Heiner, M., Lehrack, S., Gilbert, D., Marwan, W.: Extended stochastic Petri nets for model-based design of wetlab experiments. In: Priami, C., Back, R.-J., Petre, I. (eds.) Transactions on Computational Systems Biology XI. LNCS, vol. 5750, pp. 138–163. Springer, Heidelberg (2009)
Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks. Nonlinear Analysis: Hybrid Systems 6(4), 942–959 (2012)
Herajy, M.: Computational Steering of Multi-Scale Biochemical Reaction Networks. Ph.D. thesis, Brandenburg University of Technology Cottbus - Computer Science Institute (2013)
Herajy, M., Heiner, M.: Hybrid representation and simulation of stiff biochemical networks through generalised hybrid Petri nets. Tech. Rep. 02/2011, Brandenburg University of Technology Cottbus, Dept. of CS (2011)
Kar, S., Baumann, W.T., Paul, M.R., Tyson, J.J.: Exploring the roles of noise in the eukaryotic cell cycle. Proceedings of the National Academy of Sciences of the United States of America 106(16), 6471–6476 (2009)
Kiehl, T., Mattheyses, R., Simmons, M.: Hybrid simulation of cellular behavior. Bioinformatics 20, 316–322 (2004)
Liu, Z., Pu, Y., Li, F., Shaffer, C., Hoops, S., Tyson, J., Cao, Y.: Hybrid modeling and simulation of stochastic effects on progression through the eukaryotic cell cycle. J. Chem. Phys. 136(34105) (2012)
Marwan, W., Rohr, C., Heiner, M.: Petri nets in Snoopy: A unifying framework for the graphical display, computational modelling, and simulation of bacterial regulatory networks. Methods in Molecular Biology, ch. 21, vol. 804, pp. 409–437. Humana Press (2012)
Matsui, M., Fujita, S., Suzuki, S., Matsuno, H., Miyano, S.: Simulated cell division processes of the xenopus cell cycle pathway by genomic object net. Journal of Integrative Bioinformatics, 0001 (2004)
Matsuno, H., Tanaka, Y., Aoshima, H., Doi, A., Matsui, M., Miyano, S.: Biopathways representation and simulation on hybrid functional Petri net. Silico Biology 3(3) (2003)
Mura, I., Csikász-Nagy, A.: Stochastic Petri net extension of a yeast cell cycle model. Journal of Theoretical Biology 254(4), 850–860 (2008)
Sabouri-Ghomi, M., Ciliberto, A., Kar, S., Novak, B., Tyson, J.J.: Antagonism and bistability in protein interaction networks. Journal of Theoretical Biology 250(1), 209–218 (2008)
Singhania, R., Sramkoski, R.M., Jacobberger, J.W., Tyson, J.J.: A hybrid model of mammalian cell cycle regulation. PLoS Comput. Biol. 7(2), e1001077 (2011)
Steuer, R.: Effects of stochasticity in models of the cell cycle: from quantized cycle times to noise-induced oscillations. Journal of Theoretical Biology 228(3), 293–301 (2004)
Sveiczer, Á., Novák, B., Mitchison, J.: The size control of fission yeast revisited. J. Cell Sci. 109, 2947–2957 (1996)
Tyson, J., Novak, B.: Regulation of the eukaryotic cell cycle: Molecular antagonism, hysteresis, and irreversible transitions. Journal of Theoretical Biology 210(2), 249–263 (2001)
Tyson, J., Novak, B.: A Systems Biology View of the Cell Cycle Control Mechanisms. Elsevier, San Diego (2011)
Valk, R.: Self-modifying nets, a natural extension of Petri nets. In: Ausiello, G., Böhm, C. (eds.) Proceedings of the Fifth Colloquium on Automata, Languages and Programming, vol. 62, pp. 464–476. Springer, Heidelburg (1978)
Wikipedia: Wikipedia website (2012), http://www.wikipedia.org/ (accessed: September 20, 2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Herajy, M., Schwarick, M., Heiner, M. (2013). Hybrid Petri Nets for Modelling the Eukaryotic Cell Cycle. In: Koutny, M., van der Aalst, W.M.P., Yakovlev, A. (eds) Transactions on Petri Nets and Other Models of Concurrency VIII. Lecture Notes in Computer Science, vol 8100. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40465-8_7
Download citation
DOI: https://doi.org/10.1007/978-3-642-40465-8_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40464-1
Online ISBN: 978-3-642-40465-8
eBook Packages: Computer ScienceComputer Science (R0)