Neural Processing in the Bush-Cricket Auditory Pathway

Chapter
Part of the Animal Signals and Communication book series (ANISIGCOM, volume 1)

Abstract

Bush-crickets have their ears in the front tibia with the sensory organ located between two eardrums. An acoustic trachea that amplifies higher frequencies guides sound towards the sensory organ. A linearly arranged set of primary auditory neurons functions like a filter bank, for frequency discrimination and additionally supports intensity discrimination. At the level of attachment cells, a travelling wave might contribute to the frequency tuning of the auditory afferents. The first level of central auditory processing is characterised by convergence of sensory neurons onto thoracic local and intersegmental interneurons and is shaped by presynaptic and postsynaptic inhibition. Interneurons tuned to the carrier frequency are prime candidates for processing intraspecific communication signals. Other neurons are well suited for bat detection and in one neuron auditory stream segregation of conspecific and bat calls was demonstrated. Auditory brain neurons reveal processing properties not encountered in thoracic ganglia.

References

  1. Arak A, Eiriksson T, Radesäter T (1990) The adaptive significance of acoustic spacing in male bushcrickets Tettigonia viridissima: a perturbation experiment. Behav Ecol Sociobiol 26:1–7Google Scholar
  2. Baden T, Hedwig B (2010) Primary afferent depolarization and frequency processing in auditory afferents. J Neurosci 30:14862–14869PubMedGoogle Scholar
  3. Bailey WJ (1990) The ear of the bushcricket. In: Bailey WJ, Rentz DCF (eds), The Tettigoniidae. Biology, Systematics and evolution. Crawford House Press, Bathurst, pp 217–247Google Scholar
  4. Bailey WJ, Thiele DR (1983) Male spacing behavior in the Tettigoniidae: an experimental approach. In: Gwynne DT, Morris GK (eds) Orthopteran mating systems: sexual competition in a diverse group of insects. Westview Press, Colorado, pp 163–184Google Scholar
  5. Bangert M, Kalmring K, Sickmann T, Stephen R, Jatho M, Lakes-Harlan R (1998) Stimulus transmission in the auditory receptor organs of the foreleg of bushcrickets (Tettigoniidae) I. The role of the tympana. Hear Res 115:27–38PubMedGoogle Scholar
  6. Bauer M, von Helversen O (1987) Separate localization of sound recognizing and sound producing neural mechanisms in a grasshopper. J Comp Physiol A 161:95–101Google Scholar
  7. Benda J, Herz AVM (2003) A universal model for spikefrequency adaptation. Neural Comput 15:2523–2564Google Scholar
  8. Boyan G, Williams L, Meier T (1993) Organization of the commissural fibers in the adult brain of the locust. J Comp Neurol 332:358–377Google Scholar
  9. Bräunig P, Pflüger HJ (2001) The unpaired median neurons of insects. Adv Insect Physiol 28:185–266Google Scholar
  10. Burrows M, Laurent G (1993) Synaptic potentials in the central terminals of locust proprioceptive afferents generated by other afferents from the same sense organ. J Neurosci 13:808–819PubMedGoogle Scholar
  11. Dobler S, Stumpner A, Heller K-G (1994a) Sex-specific spectral tuning for the partner’s song in the duetting bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol A 175:303–310Google Scholar
  12. Dobler S, Heller K-G, Helversen O (1994b) Song pattern recognition and an auditory time window in the female bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae). J Comp Physiol A 175:67–74Google Scholar
  13. Faure PA, Hoy RR (2000a) Auditory symmetry analysis. J Exp Biol 203:3209–3223PubMedGoogle Scholar
  14. Faure PA, Hoy RR (2000b) The sounds of silence: cessation of singing and song pausing are ultrasound-induced acoustic startle behaviors in the katydid Neoconocephalus ensiger (Orthoptera; Tettigoniidae). J Comp Physiol A 186:129–142PubMedGoogle Scholar
  15. Field LH, Matheson T (1998) Chordotonal organs of insects. Adv Insect Physiol. 27:1–228Google Scholar
  16. Hardt M (1988) Zur Phonotaxis von Laubheuschrecken: Eine vergleichend verhaltensphysio-logisch/neuroanatomische Untersuchung. PhD-thesis, Universität BochumGoogle Scholar
  17. Hardt M, Watson AH (1999) Distribution of input and output synapses on the central branches of bushcricket and cricket auditory afferent neurones: immunocytochemical evidence for GABA and glutamate in different populations of presynaptic buttons. J Comp Neurol 403:281–294PubMedGoogle Scholar
  18. Heinrich R, Jatho M, Kalmring K (1993) Acoustic transmission characteristics of the tympanal tracheae of bushcrickets (Tettigoniidae). II: comparative studies of the tracheae of seven species. J Acoust Soc Am 93:3481–3489Google Scholar
  19. Heller K-G (1988) Bioakustik der europäischen Laubheuschrecken. Ökologie in Forschung und Anwendung Bd. 1:Verlag Josef Markgraf, WeihersheimGoogle Scholar
  20. Heller K-G, von Helversen D (1986) Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response. Behav Ecol Sociobiol 18:189–198Google Scholar
  21. Hennig M, Franz A, Stumpner A (2004) Processing of auditory information in insects. Microsc Res Tech 63:351–374PubMedGoogle Scholar
  22. Hill KG, Oldfiel BP (1981) Auditory function in Tettigoniidae (Orthoptera, Ensifera). J Comp Physiol A 142:169–180Google Scholar
  23. Höbel G, Schul J (2007) Listening for males and bats: spectral processing in the hearing organ of Neoconocephalus bivocatus (Orthoptera: Tettigoniidae). J Comp Physiol A 193:917–925Google Scholar
  24. Hoffmann E, Jatho M (1995) The acoustic trachea of Tettigoniids as an exponential horn: theoretical calculations and bioacoustical measurements. J Acoust Soc Am 98:1845–1851Google Scholar
  25. Horseman G, Huber F (1994) Sound localisation in crickets. I. Contralateral inhibition of an ascending auditory interneuron (AN1) in the cricket Gryllus bimaculatus. J Comp Physiol A 175:389–398Google Scholar
  26. Hoyle G, Dagand D, Moberl B, Colquhoun W (1974) Dorsal unpaired median insect neurons make neurosecretory endings on skeletal muscle. J Exp Zool 187:159–165Google Scholar
  27. Hummel J, Kössl M, Nowotny M (2011) Sound-induced tympanal membrane motion in bushcrickets and its relationship to sensory output. J Exp Biol 214:3596–3604PubMedGoogle Scholar
  28. Imaizumi K, Pollack GS (2005) Central projections of auditory receptor neurons of crickets. J Comp Neurol 493:439–447PubMedGoogle Scholar
  29. Kalmring K, Kühne R (1980) The coding of airborne-sound and vibration signals in bimodal ventral-cord neurons of the grasshopper Tettigonia cantans. J Comp Physiol 139:267–275Google Scholar
  30. Kalmring K, Rössler W, Ebendt R, Ahi J, Lakes R (1993) The auditory receptor organs in the forelegs of bushcrickets: physiology, receptor cell arrangement, and morphology of the tympanal and intermediate organs of three closely related species. Zool Jb Physiol 97:75–94Google Scholar
  31. Kalmring K, Rössler W, Unrast C (1994) Complex tibial organs in the forelegs, midlegs, and hindlegs of the bushcricket Gampsocleis gratiosa (Tettigoniidae): comparison of the physiology of the organs. J Exp Biol 270:155–161Google Scholar
  32. Kalmring K, Sickmann T, Jatho M, Zhantiev R, Grossbach M (1997) The auditory-vibratory sensory system of Polysarcus denticauda (Phaneropterinae, Tettigoniidae): III. Physiology of the ventral cord neurons ascending to the head ganglia J Exp Zool 279:9–28Google Scholar
  33. Korsunovskaya OS, Zhantiev RD (2007) Effect of temperature on auditory receptor functions in crickets (Orthoptera, Tettigoniodea). J Evol Biochem Physiol 43:327–334Google Scholar
  34. Kostarakos K, Hennig M, Römer H (2009) Two matched filters and the evolution of mating signals in four species of cricket. Front Zool 6:22PubMedGoogle Scholar
  35. Kühne R (1982) Neurophysiology of the vibration sense in locusts and bushcrickets: response characteristics of single receptor units. J Insect Physiol 28:155–163Google Scholar
  36. Lakes-Harlan R, Bailey WW, Schikorski T (1991) The auditory system of an atympanate bushcricket Phasmodes ranatriformes (Westwood)(Tettigoniidae: Orthoptera). J Exp Biol 158:307–324Google Scholar
  37. Lewis DB (1974) The physiology of the Tettigoniid ear. I. The implications of the anatomy of the ear to its function in sound reception. J Exp Biol 60:821–837PubMedGoogle Scholar
  38. Libersat F, Hoy RR (1991) Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae). J Comp Physiol A 169(4):507–514PubMedGoogle Scholar
  39. Lin Y, Kalmring K, Jatho M, Sickmann T, Rössler W (1993) Auditory receptor organs in the forelegs of Gampsocleis gratiosa (Tettigoniidae); Morphology and function of the organs in comparison to the frequency parameters of the conspecific song. J Exp Zool 267:377–388Google Scholar
  40. Lynch JW, Rajendra S, Barry PH, Schofield PR (1995) Mutations affecting the glycine receptor agonist transduction mechanism convert the competitive agonist, picrotoxin, into an allosteric potentiator. J Biol Chem 270:13799–13806PubMedGoogle Scholar
  41. Machens CK, Stemmler MB, Prinz P, Krahe R, Ronacher B, Herz AV (2001) Representation of acoustic communication signals by insect auditory receptor neurons. J Neurosci 21:3215–3227PubMedGoogle Scholar
  42. Marshall DC, Hill KBR (2009) Versatile aggressive mimicry of cicadas by an Australian predatory katydid. PLoS ONE 4:e4185PubMedGoogle Scholar
  43. Mason AC (1991) Hearing in a primitive ensiferan: the auditory system of Cyphoderris monstrosa (Orthoptera, Haglidae). J Comp Physiol A 168:351–363Google Scholar
  44. Mason AC, Faure PA (2004) The physiology of insect auditory afferents. Microsc Res Tech 63:338–350Google Scholar
  45. Mason AC, Morris GK, Hoy RR (1999) Peripheral frequency mismatch in the primitive ensiferan Cyphoderris monstrosa (Orthoptera:Haglidae). J Comp Physiol A 184:543–551Google Scholar
  46. Michelsen A, Heller KG, Stumpner A, Rohrseitz K (1994) A new biophysical method to determine the gain of the acoustic trachea in bushcrickets. J Comp Physiol A 175:145–151PubMedGoogle Scholar
  47. Michelsen A, Larsen ON (1978) Biophysics of the ensiferan ear. I. Tympanal vibrations in bushcrickets (Tettigoniidae) studied with laser vibrometry. J Comp Physiol 123:193–203Google Scholar
  48. Molina J, Stumpner A (2005) Effects of pharmacological treatment and photoinactivation on the directional responses of an insect neuron. J Exp Zool 303A:1085–1103Google Scholar
  49. Montealegre-Z F, Jonsson T, Robson-Brown KA, Postles M, Robert D (2012) Convergent evolution between insect and mammalian audition. Science 338(6109):968–971PubMedGoogle Scholar
  50. Morris GK (1971) Aggression in male conocephaline grasshoppers (Tettigoniidae). Anim Behav 19:132–137Google Scholar
  51. Nocke H (1975) Physical and physiological properties of the tettigoniid (“grasshopper”) ear. J Comp Physiol 100:25–57Google Scholar
  52. Nowotny M, Hummel J, Weber M, Möckel D, Kössl M (2010) Acoustic-induced motion of the bushcricket (Mecopoda elongata, Tettigoniidae) tympanum. J Comp Physiol A 196:939–945Google Scholar
  53. Oldfield BP (1982) Tonotopic organisation of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 147:461–469Google Scholar
  54. Oldfield BP (1983) Central projections of primary auditory fibres in Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 151:389–395Google Scholar
  55. Oldfield BP (1984) Physiology of auditory receptors in two species of Tettigoniidae (Orthoptera: Ensifera). J Comp Physiol 155:689–696Google Scholar
  56. Oldfield BP (1985) The role of the tympanal membranes in the tuning of auditory receptors in Tettigoniidae (Orthoptera: Ensifera). J Exp Biol 116:493–497Google Scholar
  57. Oldfield BP, Hill KG (1983) The physiology of ascending auditory interneurons in the tettigoniid Caedicia simplex (Orthoptera: Ensifera): response properties and a model of integration in the afferent auditory pathway. J Comp Physiol 152:495–508Google Scholar
  58. Ostrowski TD (2006) Adaptation von auditorischen Neuronen von Langfühlerschrecken (Ensifera). Diploma thesis, Universität GöttingenGoogle Scholar
  59. Ostrowski TD (2009) Filtering of species specific song parameters via interneurons in a bush cricket’s brain. PhD-thesis, Universität GöttingenGoogle Scholar
  60. Ostrowski TD, Stumpner A (2010) Frequency processing at consecutive levels in the auditory system of bush crickets (Tettigoniidae). J. Comp. Neurol. 518:3101–3116PubMedGoogle Scholar
  61. Palghat Udayashankar A, Kössl M, Nowotny M (2012) Tonotopically arranged traveling waves in the miniature hearing organ of bushcrickets. PLoS ONE 7:e31008PubMedGoogle Scholar
  62. Pires A, Hoy RR (1992) Temperature coupling in cricket acoustic communication. I. Field and laboratory studies of temperature effects on calling song production and recognition in Gryllus firmus. J Comp Physiol A 171:69–78PubMedGoogle Scholar
  63. Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639PubMedGoogle Scholar
  64. Pollack GS, Imaizumi K (1999) Neural analysis of sound frequency in insects. BioEssays 21:295–303Google Scholar
  65. Popov AV, Markovich AM, Andjan AS (1978) Auditory interneurones in the prothoracic ganglion of the cricket, Gryllus bimaculatus. I. The large segmental auditory neuron (LSAN). J Comp Physiol 126:183–192Google Scholar
  66. Poulet JFA, Hedwig B (2005) Auditory orientation in crickets: pattern recognition controls reactive steering. PNAS 102:15665–15669PubMedGoogle Scholar
  67. Reeve R, Webb B (2003) New neural circuits for robot phonotaxis. Phil Trans R Soc Lond A (Math) 361:2245–2266Google Scholar
  68. Rheinlaender J (1975) Transmission of acoustic information at three neuronal levels in the auditory system of Decticus verrucivorus (Tettigoniidae, Orthoptera). J Comp Physiol 97:1–53Google Scholar
  69. Rheinlaender J, Kalmring K (1973) Die afferente Hörbahn im Bereich des Zentralnervensystems von Decticus verrucivorus (Tettigoniidae). J Comp Physiol 85:361–410Google Scholar
  70. Rheinlaender J, Kalmring K, Römer H (1972) Akustische Neuronen mit T-Struktur im Bauchmark von Tettigoniiden. J Comp Physiol 77:208–224Google Scholar
  71. Römer H (1983) Tonotopic organization of the auditory neuropile in the bushcricket, Tettigonia viridissima. Nature 306:60–62Google Scholar
  72. Römer H (1985) Anatomical representation of frequency and intensity in the auditory system of orthoptera. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Hamburg, pp 25–32Google Scholar
  73. Römer H (1987) Representation of auditory distance within a central neuropil of the bushcricket Mygalopsis marki. J Comp Physiol A 161:33–42Google Scholar
  74. Römer H (1993) Environmental and biological constraints for the evolution of long-range signalling and hearing in acoustic insects. Trans R Soc Lond B 226:179–185Google Scholar
  75. Römer H, Bailey WJ (1986) Insect hearing in the field. II. Male spacing behaviour and correlated acoustic cues in the bushcricket Mygalopsis marki. J Comp Physiol A 159:627–638Google Scholar
  76. Römer H, Krusch M (2000) A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae). J Comp Physiol A 186:181–191PubMedGoogle Scholar
  77. Römer H, Rheinlaender J, Dronse R (1981) Intracellular studies on auditory processing in the metathoracic ganglion of the locust. J Comp Physiol 144:305–312Google Scholar
  78. Römer H, Marquart V, Hardt M (1988) Organization of a sensory neuropile in the auditory pathway of two groups of Orthoptera. J Comp Neurol 275:201–215PubMedGoogle Scholar
  79. Rössler W, Hübschen A, Schul J, Kalmring K (1994) Functional morphology of bushcricket ears: comparison between two species belonging to the Phaneropterinae and Decticinae (Insecta, Ensifera). Zoomorphol 114:39–46Google Scholar
  80. Römer H, Hedwig B, Ott SR (2002) Contralateral inhibition as a sensory bias: the neural basis for a female preference in a synchronously calling bushcricket, Mecopoda elongata. Eur J Neurosci 15:1655–1662PubMedGoogle Scholar
  81. Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket’s brain. J Comp Physiol A 155:171–185Google Scholar
  82. Schul J (1997) Neuronal basis of phonotactic behaviour in Tettigonia viridissima: Processing of behavioural relevant signals by auditory afferents and thoracic interneurons. J Comp Physiol A 180:573–583Google Scholar
  83. Schul J, Sheridan RA (2006) Auditory stream segregation in an insect. Neuroscience 138:1–4PubMedGoogle Scholar
  84. Schul J, Matt F, von Helversen O (2000) Listening for bats: The hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field. Proc R Soc Lond B 267:1711–1715Google Scholar
  85. Schul J, Mayo AM, Triblehorn JD (2012) Auditory change detection by a single neuron in an insect. J Comp Physiol A online. doi:10.1007/s00359-012-0740-3 Google Scholar
  86. Schulze W, Schul J (2001) Ultrasound avoidance behaviour in the bushcricket Tettigonia viridissima (Orthoptera: Tettigoniidae). J Exp Biol 204:733–740PubMedGoogle Scholar
  87. Schumacher R (1975) Scanning-electron-microscope description of the tibial tympanal organ of the Tettigonioidea (Orthoptera, Ensifera). Z Morph Tiere 81:209–219Google Scholar
  88. Schumacher R (1979) Zur funktionellen Morphologie des auditiven Systems der Laubheuschrecken (Orthoptera: Tettigoniidae). Entomol Gen 5:321–356Google Scholar
  89. Schwabe J (1906) Beitrage zur Morphologie und Histologie der tympanalen Sinnesapparate der Orthopteren. Zoologica 20:1–154Google Scholar
  90. Selverston AI, Kleindienst H-U, Huber F (1985) Synaptic connectivity between cricket auditory interneurons as studied by selective photoinactivation. J Neurosci 5:1283–1292PubMedGoogle Scholar
  91. Seymour C, Lewis B, Larsen ON, Michelsen A (1978) Biophysics of the ensiferan ear. J Comp Physiol 123:205–216Google Scholar
  92. Shen JX (1993a) A peripheral mechanism for auditory directionality in the bushcricket Gampsocleis gratiosa: acoustic tracheal system. J Acoust Soc Am 94:1211–1217Google Scholar
  93. Shen JX (1993b) Morphology and physiology of auditory interneurons of the bushcricket Gampsocleis gratiosa. Jap J Physiol 43:S239–S246Google Scholar
  94. Sickmann T (1997) Vergleichende funktionelle und anatomische Untersuchung zum Aufbau der Hör- und Vibrationsbahn im thorakalen Bauchmark von Laubheuschrecken. PhD Thesis, Philipps-Universität Marburg, MarburgGoogle Scholar
  95. Siegert ME, Römer H, Hashim R, Hartbauer M (2011) Neuronal correlates of a preference for leading signals in the synchronizing bushcricket Mecopoda elongata (Orthoptera, Tettigoniidae). J Exp Biol 214:3924–3934PubMedGoogle Scholar
  96. Sobel EC, Tank DW (1994) In vivo Ca2+-dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826PubMedGoogle Scholar
  97. Stölting H (1996) Morphologische und elektrophysiologische Charakterisierung auditorischer Rezeptoren bei Pholidoptera griseoaptera (Tettigoniidae, Decticinae). Diploma thesis, Universität GöttingenGoogle Scholar
  98. Stölting H, Stumpner A (1998) Tonotopic organization of auditory receptorcells in the bushcricket Pholidoptera griseoaptera (Tettigoniidae, Decticini). Cell Tissue Res 294:377–386PubMedGoogle Scholar
  99. Stradner J, Römer H (2008) Reliable coding of small behaviourally relevant interaural intensity differences in a pair of interneurons of an insect. Biol Lett 4:711–714PubMedGoogle Scholar
  100. Strauß J, Lakes-Harlan R (2008a) Neuroanatomy of the complex tibial organ of Stenopelmatus (Orthoptera: Ensifera: Stenopelmatidae). J Comp Neurol 511:81–91PubMedGoogle Scholar
  101. Strauß J, Lakes-Harlan R (2008b) Neuroanatomy and physiology of the complex tibial organ of an atympanate ensiferan, Ametrus tibialis (Brunner von Wattenwyl, 1888) (Gryllacrididae, Orthoptera) and evolutionary implications. Brain Behav Evol 71:167–180PubMedGoogle Scholar
  102. Strauß J, Lakes-Harlan R (2009) The evolutionary origin of auditory receptors in Tettigonioidea: the complex tibial organ of Schizodactylidae. Naturwissenschaften 96:143–146PubMedGoogle Scholar
  103. Stritih N, Stumpner A (2009) Vibratory interneurons in the non-hearing cave cricket indicate evolutionary origin of sound processing elements in Ensifera. Zoology 112:48–68PubMedGoogle Scholar
  104. Stumpner A (1995) Some new local and descending auditory neurons in the prothoracic ganglion of crickets and bushcrickets. In: Elsner N, Menzel R (eds) Göttingen neurobiology report. Thieme, Stuttgart, p A274Google Scholar
  105. Stumpner A (1996) Tonotopic organization of the hearing organ in a bushcricket—Physiological characterization and complete staining of auditory receptor cells. Naturwiss 83:81–84Google Scholar
  106. Stumpner A (1997) An auditory interneurone tuned to the male song frequency in the duetting bushcricket Ancistrura nigrovittata (Orthoptera, Phaneropteridae). J Exp Biol 200:1089–1101PubMedGoogle Scholar
  107. Stumpner A (1998) Picrotoxin eliminates frequency selectivity of an auditory interneuron in a bushcricket. J Neurophysiol 79:2408–2415PubMedGoogle Scholar
  108. Stumpner A (1999) Comparison of morphology and physiology of two plurisegmental sound-activated interneurones in a bushcricket. J Comp Physiol A 185:199–205Google Scholar
  109. Stumpner A (2002) A species-specific frequency filter through specific inhibition, not specific excitation. J Comp Physiol A 188:239–248Google Scholar
  110. Stumpner A, Molina J (2006) Diversity of intersegmental auditory neurons in a bush cricket. J Comp Physiol A 192:1359–1376Google Scholar
  111. Stumpner A, Atkins G, Stout J (1995) Processing of unilateral and bilateral auditory inputs by the ON1 and L1 interneurons of the cricket Acheta domesticus and comparison to other cricket species. J Comp Physiol A 177:379–388Google Scholar
  112. Suga N, Katsuki Y (1961a) Central mechanism of hearing in insects. J Exp Biol 88:545–558Google Scholar
  113. Suga N, Katsuki Y (1961b) Pharmacological studies on the auditory synapses of a grasshopper. J Exp Biol 88:759–770Google Scholar
  114. ter Hofstede HM, Fullard JH (2008) The neuroethology of song cessation in response to gleaning bat calls in two species of katydids, Neoconocephalus ensiger and Amblycorypha oblongifolia. J Exp Biol 211:2431–2441PubMedGoogle Scholar
  115. ter Hofstede HMT, Kalko EKV, Fullard JH (2010) Auditory-based defence against gleaning bats in neotropical katydids (Orthoptera: Tettigoniidae). J Comp Physiol A 196:349–358Google Scholar
  116. Thompson KJ, Siegler MVS (1991) Anatomy and physiology of spiking local and intersegmental interneurons in the median neuroblast lineage of the grasshopper. J Comp Neurol 305:659–675PubMedGoogle Scholar
  117. Triblehorn JD, Schul J (2009) Sensory-encoding differences contribute to species specific call recognition mechanisms. J Neurophysiol 102:1348–1357PubMedGoogle Scholar
  118. Watson AHD (2002) Presynaptic modulation of sensory neurons in the segmental ganglia of arthropods. Microsc Res Tech 58:262–271PubMedGoogle Scholar
  119. Zhantiev RD, Korsunovskaya OS (1978) Morpho-functional organization of tympanal organs in Tettigonia cantans (Orthoptera, Tettigoniidae). Zool Zh 57:1012–1016Google Scholar
  120. Zhantiev RD, Korsunovskaya OS (1983) Structure and functions of two auditory neurons in the bush cricket Tettigonia cantans Fuess. (Orthoptera, Tettigoniidae). Revue d‘Entomologie de L’URSS 62:462–469Google Scholar
  121. Zhantiev RD, Korsunovskaya OS (1990) Sound communication of Phaneropteridae (Orthoptera). In: Gribakin FG et al (eds) Sensory systems and communication in arthropods. Basel, Birkhäuser, pp 402–406Google Scholar
  122. Zhantiev RD, Korsunovskaya OS, Chukanov VS (2004) Effect of sound signals on spontaneous activity in grasshopper interneurons (Orthoptera, Tettigoniidae). J Evol Biochem Physiol 40:531–538Google Scholar
  123. Zimmermann U, Rheinlaender J, Robinson D (1989) Cues for male phonotaxis in the duetting bushcricket Leptophyes punctatissima. J Comp Physiol A 164:621–628Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Cellular NeurobiologyJohann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University GöttingenGöttingenGermany
  2. 2.Department of Cell Biology and NeuroscienceAK Neurobiology and BiosensorsFrankfurt am MainGermany

Personalised recommendations