Abstract
Their conspicuous acoustic communication behaviour makes crickets excellent model systems to study the neural mechanisms underlying signal generation and auditory pattern recognition. Male singing is driven by a central pattern generator (CPG) housed in the metathoracic and anterior abdominal ganglia with rhythmically active opener and closer interneurons that can reset the chirp rhythm. Command neurons descending from the brain control the singing behaviour. Female phonotaxis is tuned towards the species-specific pattern of the male calling song and auditory orientation behaviour demonstrates a parallel organisation of pattern recognition and highly accurate steering. First order auditory processing occurs in the thorax and pattern recognition in the brain. Local auditory brain neurons are tuned to the structure of the calling song, based on fast integration of inhibitory and excitatory synaptic activity. How pattern recognition is linked to the generation of auditory steering commands still remains an open question.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alexander RD (1962) Evolutionary change in cricket acoustical communication. Evolution 16:443–467
Baden T, Hedwig B (2008) Front leg movements and tibial motoneurons underlying auditory steering in the cricket (Gryllus bimaculatus deGeer). J Exp Biol 211: 2123–2133
Ball E, Oldfield B, Rudolph K (1989) Auditory organ structure, development, and function. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, London, pp 391–422
Bentley D (1977) Control of cricket song patterns by descending interneurons. J Comp Physiol A 116:19–38
Bentley DR (1969) Intracellular activity in cricket neurons during the generation of behaviour patterns. J Insect Physiol 15:677–684
Danley P, Mullen S, Liu F, Nene V, Quackenbush J, Shaw KL (2007) A cricket gene index: a genomic resource for studying neurobiology, speciation, and molecular evolution. BMC Genomics 8:109. doi:10.1186/1471-2164-8-109
Doherty JA, Pires A (1987) A new microcomputer-based method for measuring walking phonotaxis in field crickets (Gryllidae). J Exp Biol 130:425–432
Edwards CJ, Leary CJ, Rose GJ (2007) Counting on inhibition and rate-dependent excitation in the auditory system. J Neurosci 27:13384–13392
Esch H, Huber F, Wohlers DW (1980) Primary auditory neurons in crickets: physiology and central projections. J Comp Physiol A 137:27–38
Hedwig B (2000) Control of cricket stridulation by a command neuron: efficacy depends on the behavioral state. J Neurophysiol 83:712–722
Hedwig B, Heinrich R (1997) Identified descending brain neurons control different stridulatory motor patterns in an acridid grasshopper. J Comp Physiol A 180:285–294
Hedwig B, Poulet J (2005) Mechanisms underlying phonotactic steering in the cricket Gryllus bimaculatus revealed with a fast trackball system. J Exp Biol 208:915–927
Hedwig B, Poulet JFA (2004) Complex auditory behaviour emerges from simple reactive steering. Nature 430:781–785
Heffner R, Koay G, Heffner H (2007) Sound-localization acuity and its relation to vision in large and small fruit-eating bats: I. Echolocating species, Phyllostomus hastatus and Carollia perspicillata. Hearing Res 234:1–9
Helversen D, Helversen O (1995) Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? J Comp Physiol A 177:767–774
Hennig RM (1990) Neuronal organisation of the flight motor pattern in the cricket, Teleogryllus commodus. J Comp Physiol A 167(5):629–639
Hennig R, Otto D (1996) Distributed control of song pattern generation in crickets revealed by lesions to the thoracic ganglia. Zoology 99:268–276
Hoy R (1978) Acoustic communication in crickets: a model system for the study of feature detection. Fed Proc 37:2316–2323
Huber F (1955) Sitz und Bedeutung nervӧser Zentren für Instinkthandlungen beim Männchen von Gryllus campestris L. Zeitschrift für Tierpsychologie 12:12–48
Huber F, Thorson J (1985) Cricket auditory communication. Sci Am 253:46–54
Imaizumi K, Pollack GS (2001) Neural representation of sound amplitude by functionally different auditory receptors in crickets. J Acoust Soc Am 109:1247–1260
Kostarakos K, Rӧmer H (2010) Sound transmission and directional hearing in field crickets: neurophysiological studies outdoors. J Comp Physiol A 196:1–13
Kostarakos K, Hedwig B (2012) Calling song recognition in female crickets: temporal tuning of identified brain neurons matches behaviour. J Neurophysiol 32:9601–9612
Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1:3–10
Kutsch W (1969) Neuromuskuläre Aktivität bei verschiedenen Verhaltensweisen von drei Grillenarten. J Comp Physiol A 63:335–378
Kutsch W, Huber F (1989) Neural basis of song production. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, London, pp 262–309
Larsen O, Kleindienst B, Michelsen A (1989) Biophysical aspects of sound perception. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, London, pp 364–390
Mason AC, Oshinsky ML, Hoy RR (2001) Hyperacute directional hearing in a microscale auditory system. Nature 410:686–690
Michelsen A (1992) Hearing and sound communication in small animals: evolutionary adaptations to the laws of physics. In: Webster DB, Fay RR, An Popper (eds) The evolutionary biology of hearing. Springer, Berlin, pp 61–77
Michelsen A, Löhe G (1995) Tuned directionality in cricket ears. Nature 375:639
Michelsen A, Popov A, Lewis B (1994) Physics of directional hearing in the cricket Gryllus bimaculatus. J Comp Physiol A 175:153–164
Montealegre-Z F, Jonsson T, Robert D (2011) Sound radiation and wing mechanics in stridulating field crickets (Orthoptera: Gryllidae). J Exp Biol 214:2105–2117
Murphey R, Zaretsky M (1972) Orientation to calling song by female crickets, Scapsipedus marginatus (Gryllidae). J Exp Biol 56:335–352
Nakamura T, Yoshizaki M, Ogawa S, Okamoto H, Shinmyo Y, Bando T, Ohuchi H, Noji S, Mito T (2010) Imaging of transgenic cricket embryos reveals cell movements consistent with a syncytial patterning mechanism. Curr Biol 20:1641–1647
Nocke H (1972) Physiological aspects of sound communication in crickets (Gryllus campestris L.). J Comp Physiol A 80:141–162
Nolen T, Hoy R (1984) Initiation of behavior by single neurons: the role of behavioral context. Science 226:992
Olshausen BA, Field DJ (2004) Sparse coding of sensory inputs. Curr Opin Neurobiol 14:481–487
Otte D (1992) Evolution of cricket songs. J Orthop Res 1:25–49
Otto D (1971) Untersuchungen zur zentralnervӧsen kontrolle der lauterzeugung von grillen. J Comp Physiol A 74:227–271
Otto D (1978) Änderungen von Gesangsparametern bei der Grille (Gryllus campestris L.) nach Injektion von Pharmaka ins Gehirn. Verh Dtsch Zool Ges 245
Otto D, Hennig R (1993) Interneurons descending from the cricket subesophageal ganglion control stridulation and ventilation. Naturwissenschaften 80:36–38
Perkel DH, Mulloney B (1974) Motor pattern production in reciprocally inhibitory neurons exhibiting postinhibitory rebound. Science 185:181–183
Petrou G, Webb B (2012) Detailed tracking of body and leg movements of a freely walking female cricket during phonotaxis. J Neurosci Meth 203:56–68
Pollack G (2000) Who, what, where? recognition and localization of acoustic signals by insects. Curr Opin Neurobiol 10:763–767
Pollack G, Faulkes Z (1998) Representation of behaviorally relevant sound frequencies by auditory receptors in the cricket Teleogryllus oceanicus. J Exp Biol 201:155–163
Pollack GS (1988) Selective attention in an insect auditory neuron. J Neurosci 8:2635–2639
Pollack GS, Hoy RR (1979) Temporal pattern as a cue for species-specific calling song recognition in crickets. Science 204:429
Popov A, Shuvalov V, Svetlogorskaya I, Markovich A (1974) Acoustic behaviour and auditory system in insects. In: J. Schwartzkopff, (ed) Mechanoreception. Abh Rheinisch-Westfäl Akad Wiss, vol 53. pp 281–306
Poulet JFA, Hedwig B (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–876
Poulet JFA, Hedwig B (2006) The cellular basis of a corollary discharge. Science 311:518
Poulet JFA, Hedwig B (2005) Auditory orientation in crickets: pattern recognition controls reactive steering. Proc Nat Acad Sci 102:15665–15669
Reeve RE, Webb BH (2003) New neural circuits for robot phonotaxis. Phil Trans Roy Soc London A 361:2245–2266
Regen J (1913) Ueber die anlockung des weibchens von Gryllus campestris L. durch telephonisch übertragene Stridulationslaute des Männchens. Pflüg Archiv Europ J Physiol 155:193–200
Rheinlaender J, Blätgen G (1982) The precision of auditory lateralization in the cricket, Gryllus bimaculatus. Physiol Entomol 7:209–218
Roesel von Rosenhof AJ (1749) Insectenbelustigung zweyter Theil, welcher acht Klassen verschiedener sowohl inlaendischer als auch einiger auslaendischer Insecten enthaelt. Nuernberg, Fleischmann JJ
Rose G, Capranica RR (1983) Temporal selectivity in the central auditory system of the leopard frog. Science 219:1087–1089
Rose GJ, Leary CJ, Edwards CJ (2011) Interval-counting neurons in the anuran auditory midbrain: factors underlying diversity of interval tuning. J Comp Physiol A 197:97–108
Schildberger K (1984) Temporal selectivity of identified auditory neurons in the cricket brain. J Comp Physiol A 155:171–185
Schildberger K, Hӧrner M (1988) The function of auditory neurons in cricket phonotaxis I. Influence of hyperpolarization of identified neurons on sound localization. J Comp Physiol A 163:621–631
Schildberger K, Huber F, Wohlers D (1989) Central auditory pathway: neuronal correlates of phonotactic behavior. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, London, pp 423–458
Schmitz B, Scharstein H, Wendler G (1982) Phonotaxis in Gryllus campestris L. (Orthoptera, Gryllidae). J Comp Physiol A 148:431–444
Schöneich S, Hedwig B (2010) Hyperacute directional hearing and phonotactic steering in the cricket (Gryllus bimaculatus deGeer). PLoS ONE 5(12):e15141
Schöneich S, Hedwig B (2011) Neural basis of singing in crickets: central pattern generation in abdominal ganglia. Naturwissenschaften 98(12):1069–1073
Schöneich S, Hedwig B (2012) Cellular basis for singing motor pattern generation in the field cricket (Gryllus bimaculatus DeGeer). Brain Behav 2(6):707–725
Sobel EC, Tank DW (1994) In vivo Ca2+ dynamics in a cricket auditory neuron: an example of chemical computation. Science 263:823–826
Staudacher E (1998) Distribution and morphology of descending brain neurons in the cricket Gryllus bimaculatus. Cell Tiss Res 294:187–202
Staudacher E, Schildberger K (1998) Gating of sensory responses of descending brain neurones during walking in crickets. J Exp Biol 201:559–572
Staudacher EM (2001) Sensory responses of descending brain neurons in the walking cricket, Gryllus bimaculatus. J Comp Physiol A 187:1–17
Stumpner A, von Helversen D (2001) Evolution and function of auditory systems in insects. Naturwissenschaften 88:159–170
Stout JF, DeHaan CH, McGhee RW (1983) Attractiveness of the male Acheta domesticus calling song to females I. Dependence on each of the calling song features. J Comp Physiol A 153:509–521
Thorson J, Weber T, Huber F (1982) Auditory behavior of the cricket II. Simplicity of calling-song recognition in Gryllus and anomalous phonotaxis at abnormal frequencies. J Comp Physiol A 146:361–378
Tschuch G (1977) Der Einfluss synthetischer Gesänge auf die Weibchen von Gryllus bimaculatus de Geer (Teil 2). Zool Jb Physiol 81:360–372
Ulagaraj S, Walker TJ (1973) Phonotaxis of crickets in flight: attraction of male and female crickets to male calling songs. Science 182:1278–1279
Weber T, Thorson J (1989) Phonotactic behavior of walking crickets. In: Huber F, Moore TE, Loher W (eds) Cricket behaviour and neurobiology. Cornell University Press, London, pp 310–339
Wendler G, Dambach M, Schmitz B, Scharstein H (1980) Analysis of the acoustic orientation behavior in crickets (Gryllus campestris L.). Naturwissenschaften 67:99–101
Wenzel B, Hedwig B (1999) Neurochemical control of cricket stridulation revealed by pharmacological microinjections into the brain. J Exp Biol 202:2203–2216
Wiese K, Eilts-Grimm K (1985) Functional potential of recurrent lateral inhibition in cricket audition. In: Kalmring K, Elsner N (eds) Acoustic and vibrational communication in insects. Parey, Berlin, pp 33–40
Witney AG, Hedwig B (2011) Kinematics of phonotactic steering in the walking cricket Gryllus bimaculatus (de Geer). J Exp Biol 214:69–79
Wohlers DW, Huber F (1982) Processing of sound signals by six types of neurons in the prothoracic ganglion of the cricket, Gryllus campestris L. J Comp Physiol A 146:161–173
Wyttenbach RA, May ML, Hoy RR (1996) Categorical perception of sound frequency by crickets. Science 273:1542–1544
Zorovic M, Hedwig B (2011) Processing of species-specific auditory patterns in the cricket brain by ascending, local, and descending neurons during standing and walking. J Neurophysiol 105:2181–2194
Acknowledgments
I am grateful to the members of the lab that contributed to the presented data and fruitful discussions: Stefan Schöneich, Kostas Kostarakos, Hannah ter Hofstede, James Poulet, Tom Baden and Alice Witney and also to the BBSRC, the Isaac Newton Trust and the Royal Society for funding.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Hedwig, B. (2014). Towards an Understanding of the Neural Basis of Acoustic Communication in Crickets. In: Hedwig, B. (eds) Insect Hearing and Acoustic Communication. Animal Signals and Communication, vol 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40462-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-40462-7_8
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40461-0
Online ISBN: 978-3-642-40462-7
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)