Skip to main content

Table Cartograms

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8125)

Abstract

A table cartogram of a two dimensional m ×n table A of non-negative weights in a rectangle R, whose area equals the sum of the weights, is a partition of R into convex quadrilateral faces corresponding to the cells of A such that each face has the same adjacency as its corresponding cell and has area equal to the cell’s weight. Such a partition acts as a natural way to visualize table data arising in various fields of research. In this paper, we give a O(mn)-time algorithm to find a table cartogram in a rectangle. We then generalize our algorithm to obtain table cartograms inside arbitrary convex quadrangles, circles, and finally, on the surface of cylinders and spheres.

Keywords

  • Outerplanar Graph
  • Interesting Open Problem
  • Correct Area
  • Concave Corner
  • Convex Quadrilateral

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40450-4_36
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-40450-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Raisz, E.: The rectangular statistical cartogram. Geographical Review 24(2), 292–296 (1934)

    CrossRef  Google Scholar 

  2. van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comput. Geom. Theory Appl. 37(3), 175–187 (2007)

    MATH  CrossRef  Google Scholar 

  3. Heilmann, R., Keim, D.A., Panse, C., Sips, M.: Recmap: Rectangular map approximations. In: Proc. of InfoVis 2004, pp. 33–40 (2004)

    Google Scholar 

  4. Wood, J., Dykes, J.: Spatially ordered treemaps. IEEE Transactions on Visualization and Computer Graphics 14(6), 1348–1355 (2008)

    CrossRef  Google Scholar 

  5. Eppstein, D., van Kreveld, M., Speckmann, B., Staals, F.: Improved grid map layout by point set matching. In: Proc. of PacificVis 2013 (to appear, 2013)

    Google Scholar 

  6. Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectangular layouts. In: SoCG 2009, pp. 267–276. ACM (2009)

    Google Scholar 

  7. de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. Discrete Mathematics 309(7), 1794–1812 (2009)

    MathSciNet  MATH  CrossRef  Google Scholar 

  8. Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.: Computing cartograms with optimal complexity. In: SoCG 2012, pp. 21–30 (2012)

    Google Scholar 

  9. Yeap, K.H., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rectilinear modules. SIAM J. Comput. 22(3), 500–526 (1993)

    MathSciNet  MATH  CrossRef  Google Scholar 

  10. Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G.: Proportional contact representations of planar graphs. Journal of Graph Algorithms and Applications 16(3), 701–728 (2012)

    MathSciNet  MATH  CrossRef  Google Scholar 

  11. Dougenik, J.A., Chrisman, N.R., Niemeyer, D.R.: An algorithm to construct continuous area cartograms. The Professional Geographer 37(1), 75–81 (1985)

    CrossRef  Google Scholar 

  12. Dorling, D.: Area cartograms: their use and creation. Number 59 in Concepts and Techniques in Modern Geography. University of East Anglia (1996)

    Google Scholar 

  13. Keim, D.A., North, S.C., Panse, C.: Cartodraw: A fast algorithm for generating contiguous cartograms. IEEE Trans. Vis. Comput. Graph. 10(1), 95–110 (2004)

    CrossRef  Google Scholar 

  14. Gastner, M.T., Newman, M.E.J.: Diffusion-based method for producing density-equalizing maps. National Academy of Sciences 101(20), 7499–7504 (2004)

    MathSciNet  MATH  CrossRef  Google Scholar 

  15. Edelsbrunner, H., Waupotitsch, R.: A combinatorial approach to cartograms. Computational Geometry: Theory and Applications 7(5-6), 343–360 (1997)

    MathSciNet  MATH  CrossRef  Google Scholar 

  16. House, D.H., Kocmoud, C.J.: Continuous cartogram construction. In: Proc. of VIS 1998, pp. 197–204 (1998)

    Google Scholar 

  17. Tobler, W.: Thirty five years of computer cartograms. Annals Assoc. American Geographers 94(1), 58–73 (2004)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Evans, W. et al. (2013). Table Cartograms. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_36

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)