Table Cartograms

  • William Evans
  • Stefan Felsner
  • Michael Kaufmann
  • Stephen G. Kobourov
  • Debajyoti Mondal
  • Rahnuma Islam Nishat
  • Kevin Verbeek
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8125)


A table cartogram of a two dimensional m ×n table A of non-negative weights in a rectangle R, whose area equals the sum of the weights, is a partition of R into convex quadrilateral faces corresponding to the cells of A such that each face has the same adjacency as its corresponding cell and has area equal to the cell’s weight. Such a partition acts as a natural way to visualize table data arising in various fields of research. In this paper, we give a O(mn)-time algorithm to find a table cartogram in a rectangle. We then generalize our algorithm to obtain table cartograms inside arbitrary convex quadrangles, circles, and finally, on the surface of cylinders and spheres.


Outerplanar Graph Interesting Open Problem Correct Area Concave Corner Convex Quadrilateral 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Raisz, E.: The rectangular statistical cartogram. Geographical Review 24(2), 292–296 (1934)CrossRefGoogle Scholar
  2. 2.
    van Kreveld, M., Speckmann, B.: On rectangular cartograms. Comput. Geom. Theory Appl. 37(3), 175–187 (2007)zbMATHCrossRefGoogle Scholar
  3. 3.
    Heilmann, R., Keim, D.A., Panse, C., Sips, M.: Recmap: Rectangular map approximations. In: Proc. of InfoVis 2004, pp. 33–40 (2004)Google Scholar
  4. 4.
    Wood, J., Dykes, J.: Spatially ordered treemaps. IEEE Transactions on Visualization and Computer Graphics 14(6), 1348–1355 (2008)CrossRefGoogle Scholar
  5. 5.
    Eppstein, D., van Kreveld, M., Speckmann, B., Staals, F.: Improved grid map layout by point set matching. In: Proc. of PacificVis 2013 (to appear, 2013)Google Scholar
  6. 6.
    Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectangular layouts. In: SoCG 2009, pp. 267–276. ACM (2009)Google Scholar
  7. 7.
    de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. Discrete Mathematics 309(7), 1794–1812 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G., Ueckerdt, T.: Computing cartograms with optimal complexity. In: SoCG 2012, pp. 21–30 (2012)Google Scholar
  9. 9.
    Yeap, K.H., Sarrafzadeh, M.: Floor-planning by graph dualization: 2-concave rectilinear modules. SIAM J. Comput. 22(3), 500–526 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Alam, M.J., Biedl, T., Felsner, S., Kaufmann, M., Kobourov, S.G.: Proportional contact representations of planar graphs. Journal of Graph Algorithms and Applications 16(3), 701–728 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Dougenik, J.A., Chrisman, N.R., Niemeyer, D.R.: An algorithm to construct continuous area cartograms. The Professional Geographer 37(1), 75–81 (1985)CrossRefGoogle Scholar
  12. 12.
    Dorling, D.: Area cartograms: their use and creation. Number 59 in Concepts and Techniques in Modern Geography. University of East Anglia (1996)Google Scholar
  13. 13.
    Keim, D.A., North, S.C., Panse, C.: Cartodraw: A fast algorithm for generating contiguous cartograms. IEEE Trans. Vis. Comput. Graph. 10(1), 95–110 (2004)CrossRefGoogle Scholar
  14. 14.
    Gastner, M.T., Newman, M.E.J.: Diffusion-based method for producing density-equalizing maps. National Academy of Sciences 101(20), 7499–7504 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Edelsbrunner, H., Waupotitsch, R.: A combinatorial approach to cartograms. Computational Geometry: Theory and Applications 7(5-6), 343–360 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    House, D.H., Kocmoud, C.J.: Continuous cartogram construction. In: Proc. of VIS 1998, pp. 197–204 (1998)Google Scholar
  17. 17.
    Tobler, W.: Thirty five years of computer cartograms. Annals Assoc. American Geographers 94(1), 58–73 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • William Evans
    • 1
  • Stefan Felsner
    • 2
  • Michael Kaufmann
    • 3
  • Stephen G. Kobourov
    • 4
  • Debajyoti Mondal
    • 5
  • Rahnuma Islam Nishat
    • 6
  • Kevin Verbeek
    • 7
  1. 1.Department of Computer ScienceUniversity of British ColumbiaCanada
  2. 2.Institut für MathematikTechnische Universität BerlinGermany
  3. 3.Wilhelm-Schickard-Institut für InformatikUniversität TübingenGermany
  4. 4.Department of Computer ScienceUniversity of ArizonaUSA
  5. 5.Department of Computer ScienceUniversity of ManitobaCanada
  6. 6.Department of Computer ScienceUniversity of VictoriaCanada
  7. 7.Department of Computer ScienceUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations