Skip to main content

Rumor Spreading in Random Evolving Graphs

  • Conference paper
Algorithms – ESA 2013 (ESA 2013)

Abstract

In this paper, we aim at analyzing the classical information spreading push protocol in dynamic networks. We consider the edge-Markovian evolving graph model which captures natural temporal dependencies between the structure of the network at time t, and the one at time t + 1. Precisely, a non-edge appears with probability p, while an existing edge dies with probability q. In order to fit with real-world traces, we mostly concentrate our study on the case where \(p=\Omega(\frac{1}{n})\) and q is constant. We prove that, in this realistic scenario, the push protocol does perform well, completing information spreading in O(logn) time steps, w.h.p., even when the network is, w.h.p., disconnected at every time step (e.g., when \(p\ll \frac{\log n}{n}\)). The bound is tight. We also address other ranges of parameters p and q (e.g., p + q = 1 with arbitrary p and q, and \(p=\Theta\left(\frac{1}{n}\right)\) with arbitrary q). Although they do not precisely fit with the measures performed on real-world traces, they can be of independent interest for other settings. The results in these cases confirm the positive impact of dynamism.

A. Clementi is supported by Italian MIUR under the COFIN 2010-11 project ARS TechnoMedia. C. Doerr is supported by a F. Lynen postdoctoral research fellowship of the A. von Humboldt Foundation and by ANR project CRYQ. P. Fraigniaud is supported by ANR project DISPLEXITY, and INRIA project GANG. A. Panconesi is supported by a Google Faculty Research Award and EU FET project MULTIPLEX 317532. F. Pasquale is supported by EU FET project MULTIPLEX 317532.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avin, C., Koucký, M., Lotker, Z.: How to explore a fast-changing world (Cover time of a simple random walk on evolving graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  2. Azar, Y., Broder, A.Z., Karlin, A.R., Upfal, E.: Balanced allocations. SIAM J. on Computing 29(1), 180–200 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. Distributed Computing 24(1), 31–44 (2011)

    Article  MATH  Google Scholar 

  4. Bollobás, B.: Random Graphs. Cambridge University Press (2001)

    Google Scholar 

  5. Boyd, S., Arpita, G., Balaji, P., Devavrat, S.: Gossip algorithms: Design, analysis and applications. In: Proc. of 24th INFOCOM, pp. 1653–1664. IEEE (2005)

    Google Scholar 

  6. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumor Spreading in Social Networks. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 375–386. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds on rumour spreading by conductance. In: Proc. of 42nd ACM STOC, pp. 399–408 (2010)

    Google Scholar 

  8. Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph conductance. In: Proc. of 21th ACM-SIAM SODA, pp. 1657–1663 (2010)

    Google Scholar 

  9. Clementi, A., Crescenzi, P., Doerr, C., Fraigniaud, P., Isopi, M., Pasquale, F., Panconesi, A., Silvestri, R.: Rumor Spreading in Random Evolving Graphs, http://arxiv.org/abs/1302.3828

  10. Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time of edge-Markovian evolving graphs. SIAM J. Discrete Math. 24(4), 1694–1712 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Broadcasting in dynamic radio networks. J. Comput. Syst. Sci. 75(4), 213–230 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Information spreading in stationary Markovian evolving graph. IEEE Trans. Parallel Distrib. Syst. 22(9), 1425–1432 (2011)

    Article  Google Scholar 

  13. Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proc. of 6th ACM PODC, pp. 1–12 (1987)

    Google Scholar 

  14. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: Proc. of 43rd ACM STOC, pp. 21–30. ACM, New York (2011)

    Google Scholar 

  15. Doerr, B., Huber, A., Levavi Strong, A.: robustness of randomized rumor spreading protocols. Discrete Applied Mathematics 161(6), 778–793 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Erdős, P., Rényi, A.: On Random Graphs. Publ. Math. 6, 290–297 (1959)

    Google Scholar 

  17. Feige, U., Peleg, D., Raghavan, P., Upfal, E.: Randomized broadcast in networks. Random Structures and Algorithms 1(4), 447–460 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ferreira, A.: On models and algorithms for dynamic communication networks: The case for evolving graphs. In: Proc. of 4th ALGOTEL, pp. 155–161 (2002)

    Google Scholar 

  19. Fountoulakis, N., Huber, A., Panagiotou, K.: Reliable broadcasting in random networks and the effect of density. In: Proc. of 29th IEEE INFOCOM, pp. 2552–2560 (2010)

    Google Scholar 

  20. Fountoulakis, N., Panagiotou, K.: Rumor spreading on random regular graphs and expanders. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 560–573. Springer, Heidelberg (2010)

    Google Scholar 

  21. Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: Proc. of 23rd ACM-SIAM SODA, pp. 1642–1660 (2012)

    Google Scholar 

  22. Frieze, A., Grimmett, G.: The shortest-path problem for graphs with random arc-lengths. Discrete Applied Mathematics 10(1), 57–77 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: Proc. of 28th STACS. LIPIcs, vol. 9, pp. 57–68. Schloss Dagstuhl (2011)

    Google Scholar 

  24. Giakkoupis, G., Sauerwald, T.: Rumor spreading and vertex expansion. In: Proc. of 23rd ACM-SIAM SODA, pp. 1623–1641. SIAM (2012)

    Google Scholar 

  25. Gilbert, E.N.: Random graphs. Annals of Math. Statistics 30(4), 1141–1144 (1959)

    Article  MATH  Google Scholar 

  26. Grindrod, P., Higham, D.J.: Evolving graphs: dynamical models, inverse problems and propagation. Proc. R. Soc. A 466(2115), 753–770 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Harchol-Balter, M., Leighton, T., Lewin, D.: Resource discovery in distributed networks. In: Proc. of 18th PODC, pp. 229–237. ACM, New York (1999)

    Google Scholar 

  28. Jacquet, P., Mans, B., Rodolakis, G.: Information Propagation Speed in Mobile and Delay Tolerant Networks. IEEE Trans. on Inf. Theory 56, 5001–5015 (2010)

    Article  MathSciNet  Google Scholar 

  29. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based Peer Sampling. ACM Trans. Comp. Syst. 25(3), Article 8 (2007)

    Google Scholar 

  30. Karp, R., Schindelhauer, C., Shenker, S., Vocking, B.: Randomized rumor spreading. In: Proc. of 41st IEEE FOCS, pp. 565–574. IEEE (2000)

    Google Scholar 

  31. Kermarrec, A.-M., van Steen, M.: Gossiping in distributed systems. SIGOPS Oper. Syst. Rev. 41(5), 2–7 (2007)

    Article  Google Scholar 

  32. Kuhn, F., Linch, N., Oshman, R.: Distributed Computation in Dynamic Networks. In: Proc. of 42nd ACM STOC, pp. 513–522. ACM, New York (2010)

    Google Scholar 

  33. Kuhn, F., Oshman, R.: Dynamic networks: models and algorithms. ACM SIGACT News 42(1), 82–96 (2011)

    Article  Google Scholar 

  34. Pittel, B.: On spreading a rumor. SIAM Journal on Applied Mathematics 47(1), 213–223 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sauerwald, T., Stauffer, A.: Rumor spreading and vertex expansion on regular graphs. In: Proc. of 22nd ACM-SIAM SODA, pp. 462–475. SIAM (2011)

    Google Scholar 

  36. Van Renesse, R., Minsky, Y., Hayden, M.: A Gossip-Style Failure Detection Service. In: Proc. of Middleware, pp. 55–70 (1998)

    Google Scholar 

  37. Vojnovic, M., Proutier, A.: Hop limited flooding over dynamic networks. In: Proc. of 30th IEEE INFOCOM, pp. 685–693. IEEE (2011)

    Google Scholar 

  38. Whitbeck, J., Conan, V., de Amorim, M.D.: Performance of Opportunistic Epidemic Routing on Edge-Markovian Dynamic Graphs. IEEE Transactions on Communications 59(5), 1259–1263 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Clementi, A. et al. (2013). Rumor Spreading in Random Evolving Graphs. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics