Abstract
We prove that in an n-vertex graph, induced chordal and interval subgraphs with the maximum number of vertices can be found in time \(\mathcal{O}(2^{\lambda n})\) for some λ < 1. These are the first algorithms breaking the trivial 2n n O(1) bound of the brute-force search for these problems.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
Brandstädt, A., Le, V., Spinrad, J.P.: Graph Classes. A Survey, SIAM Mon. on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)
Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compression and exact algorithms. Theor. Comput. Sci. 411, 1045–1053 (2010)
Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)
Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)
Fomin, F.V., Todinca, I., Villanger, Y.: Exact algorithm for the maximum induced planar subgraph problem. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 287–298. Springer, Heidelberg (2011)
Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32, 289–308 (2012)
Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs. Algorithmica 62, 637–658 (2012)
Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)
Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem: Fast exponential algorithms and combinatorial bounds. SIAM J. Discrete Math. 26, 1758–1780 (2012)
Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)
Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20, 219–230 (1980)
Pilipczuk, M., Pilipczuk, M.: Finding a maximum induced degenerate subgraph faster than 2n. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 3–12. Springer, Heidelberg (2012)
Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal independent sets and other techniques. Theory Comput. Syst. 41, 563–587 (2007)
Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440 (1986)
Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems. SIAM J. Comput. 10, 456–464 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bliznets, I., Fomin, F.V., Pilipczuk, M., Villanger, Y. (2013). Largest Chordal and Interval Subgraphs Faster Than 2n . In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-40450-4_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40449-8
Online ISBN: 978-3-642-40450-4
eBook Packages: Computer ScienceComputer Science (R0)