Skip to main content

Largest Chordal and Interval Subgraphs Faster Than 2n

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8125)

Abstract

We prove that in an n-vertex graph, induced chordal and interval subgraphs with the maximum number of vertices can be found in time \(\mathcal{O}(2^{\lambda n})\) for some λ < 1. These are the first algorithms breaking the trivial 2n n O(1) bound of the brute-force search for these problems.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40450-4_17
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-40450-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandstädt, A., Le, V., Spinrad, J.P.: Graph Classes. A Survey, SIAM Mon. on Discrete Mathematics and Applications. SIAM, Philadelphia (1999)

    CrossRef  Google Scholar 

  2. Fomin, F.V., Gaspers, S., Kratsch, D., Liedloff, M., Saurabh, S.: Iterative compression and exact algorithms. Theor. Comput. Sci. 411, 1045–1053 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. Fomin, F.V., Gaspers, S., Pyatkin, A.V., Razgon, I.: On the minimum feedback vertex set problem: Exact and enumeration algorithms. Algorithmica 52, 293–307 (2008)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer (2010)

    Google Scholar 

  5. Fomin, F.V., Todinca, I., Villanger, Y.: Exact algorithm for the maximum induced planar subgraph problem. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 287–298. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  6. Fomin, F.V., Villanger, Y.: Treewidth computation and extremal combinatorics. Combinatorica 32, 289–308 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. Gaspers, S., Kratsch, D., Liedloff, M.: On independent sets and bicliques in graphs. Algorithmica 62, 637–658 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York (1980)

    MATH  Google Scholar 

  9. Gupta, S., Raman, V., Saurabh, S.: Maximum r-regular induced subgraph problem: Fast exponential algorithms and combinatorial bounds. SIAM J. Discrete Math. 26, 1758–1780 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fund. Math. 51, 45–64 (1962)

    MathSciNet  MATH  Google Scholar 

  11. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20, 219–230 (1980)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Pilipczuk, M., Pilipczuk, M.: Finding a maximum induced degenerate subgraph faster than 2n. In: Thilikos, D.M., Woeginger, G.J. (eds.) IPEC 2012. LNCS, vol. 7535, pp. 3–12. Springer, Heidelberg (2012)

    CrossRef  Google Scholar 

  13. Raman, V., Saurabh, S., Sikdar, S.: Efficient exact algorithms through enumerating maximal independent sets and other techniques. Theory Comput. Syst. 41, 563–587 (2007)

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7, 425–440 (1986)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Schroeppel, R., Shamir, A.: A T = O(2n/2), S = O(2n/4) algorithm for certain NP-complete problems. SIAM J. Comput. 10, 456–464 (1981)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bliznets, I., Fomin, F.V., Pilipczuk, M., Villanger, Y. (2013). Largest Chordal and Interval Subgraphs Faster Than 2n . In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)