Skip to main content

Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8125)

Abstract

An assignment of colours to the vertices of a graph is stable if any two vertices of the same colour have identically coloured neighbourhoods. The goal of colour refinement is to find a stable colouring that uses a minimum number of colours. This is a widely used subroutine for graph isomorphism testing algorithms, since any automorphism needs to be colour preserving. We give an O((m+n)log n) algorithm for finding a canonical version of such a stable colouring, on graphs with n vertices and m edges. We show that no faster algorithm is possible, under some modest assumptions about the type of algorithm, which captures all known colour refinement algorithms.

Keywords

  • Stable Colouring
  • Colour Class
  • Graph Isomorphism
  • Canonical Sequence
  • Stable Partition

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40450-4_13
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   89.00
Price excludes VAT (USA)
  • ISBN: 978-3-642-40450-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babai, L.: Moderately exponential bound for graph isomorphism. In: Gécseg, F. (ed.) FCT 1981. LNCS, vol. 117, pp. 34–50. Springer, Heidelberg (1981)

    Google Scholar 

  2. Babai, L., Erdös, P., Selkow, S.: Random graph isomorphism. SIAM Journal on Computing 9, 628–635 (1980)

    MathSciNet  MATH  CrossRef  Google Scholar 

  3. Babai, L., Luks, E.: Canonical labeling of graphs. In: Proc. STOC 1983, pp. 171–183 (1983)

    Google Scholar 

  4. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identifications. Combinatorica 12(4), 389–410 (1992)

    MathSciNet  MATH  CrossRef  Google Scholar 

  5. Cardon, A., Crochemore, M.: Partitioning a graph in O(|A|log2|V|). Theoretical Computer Science 19(1), 85–98 (1982)

    MathSciNet  MATH  CrossRef  Google Scholar 

  6. Darga, P., Liffiton, M., Sakallah, K., Markov, I.: Exploiting structure in symmetry detection for CNF. In: Proc. DAG 2004, pp. 530–534 (2004)

    Google Scholar 

  7. Hopcroft, J.: An n log n algorithm for minimizing states in a finite automaton. In: Kohavi, Z., Paz, A. (eds.) Theory of Machines and Computations, pp. 189–196. Academic Press (1971)

    Google Scholar 

  8. Junttila, T., Kaski, P.: Engineering an efficient canonical labeling tool for large and sparse graphs. In: Proc. ALENEX 2007, pp. 135–149 (2007)

    Google Scholar 

  9. McKay, B.: Practical graph isomorphism. Congressus Numerantium 30, 45–87 (1981)

    MathSciNet  Google Scholar 

  10. McKay, B.: Nauty users guide (version 2.4). Computer Science Dept., Australian National University (2007)

    Google Scholar 

  11. Paige, R., Tarjan, R.: Three partition refinement algorithms. SIAM Journal on Computing 16(6), 973–989 (1987)

    MathSciNet  MATH  CrossRef  Google Scholar 

  12. Piperno, A.: Search space contraction in canonical labeling of graphs. arXiv preprint arXiv:0804.4881v2 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berkholz, C., Bonsma, P., Grohe, M. (2013). Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement. In: Bodlaender, H.L., Italiano, G.F. (eds) Algorithms – ESA 2013. ESA 2013. Lecture Notes in Computer Science, vol 8125. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40450-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40450-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40449-8

  • Online ISBN: 978-3-642-40450-4

  • eBook Packages: Computer ScienceComputer Science (R0)