Skip to main content

New Cell Wall-Affecting Antifungal Antibiotics

  • Chapter
  • First Online:
Antimicrobial Compounds

Abstract

Fungi have emerged worldwide as increasingly frequent causes of healthcare-associated infections. Invasive fungal infections can be life-threatening. However, the number of antifungal agents available and their use in therapy is very limited. Recently, a new family of specific fungal cell wall synthesis inhibitors has emerged as an alternative antifungal therapy and is gaining increasing relevance yearly. The cell wall is a multilayer dynamic structure, essential to the integrity and shape of the fungal cell, whose function is to counteract the osmotic forces that could otherwise produce fungal cell lysis. The cell wall is absent in nonfungal cells, therefore representing a useful target in discovering selective drugs for the treatment of fungal infections without causing toxicity in the host. Although fungi exhibit a considerable diversity in their cell wall structure, all present β(1,3)-, β(1,6)- and α(1,3)-glucans, chitin, and mannoproteins as their major cell wall components. Three different cell wall synthesis inhibitors of the lipopeptide family of echinocandins, named caspofungin, micafungin, and anidulafungin, are commercially available and new classes of cell wall synthesis inhibitors are emerging. This review provides an overview of what is so far known about the different classes of cell wall-affecting antifungal agents and their mechanism of action, offering new alternatives with clinical potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abe M, Qadota H, Hirata A, Ohya Y (2003) Lack of GTP-bound Rho1p in secretory vesicles of Saccharomyces cerevisiae. J Cell Biol 162:85–97

    PubMed  CAS  Google Scholar 

  • Arellano M, Coll PM, Yang W, Durán A, Tamanoi F, Pérez P (1998) Characterization of the geranylgeranyl transferase type I from Schizosaccharomyces pombe. Mol Microbiol 29:1357–1367

    PubMed  CAS  Google Scholar 

  • Arellano M, Duran A, Perez P (1996) Rho1 GTPase activates the (1-3)β-D-glucan synthase and is involved in Schizosaccharomyces pombe morphogenesis. EMBO J 15:4584–4591

    PubMed  CAS  Google Scholar 

  • Baguley BC, Rommele G, Gruner J, Wehrli W (1979) Papulacandin B: an inhibitor of glucan synthesis in yeast spheroplasts. Eur J Biochem 97:345–351

    PubMed  CAS  Google Scholar 

  • Ben-Ami R, Kontoyiannis DP (2012) Resistance to echinocandins comes at a cost: the impact of FKS1 hotspot mutations on Candida albicans fitness and virulence. Virulence 3:95–97

    PubMed  Google Scholar 

  • Bowman SM, Free SJ (2006) The structure and synthesis of the fungal cell wall. BioEssays 28:799–808

    PubMed  Google Scholar 

  • Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012a) Hidden killers: human fungal infections. Sci Transl Med 4:165rv13

    Google Scholar 

  • Brown GD, Denning DW, Levitz SM (2012b) Tackling human fungal infections. Science 336:647

    PubMed  CAS  Google Scholar 

  • Butts A, Krysan DJ (2012) Antifungal drug discovery: something old and something new. PLoS Pathog 8:e1002870

    PubMed  CAS  Google Scholar 

  • Cabib E, Blanco N, Grau C, Rodriguez-Pena JM, Arroyo J (2007) Crh1p and Crh2p are required for the cross-linking of chitin to β(1-6) glucan in the Saccharomyces cerevisiae cell wall. Mol Microbiol 63:921–935

    PubMed  CAS  Google Scholar 

  • Cabib E, Bowers B, Sburlati A, Silverman SJ (1988) Fungal cell wall synthesis: the construction of a biological structure. Microbiol Sci 5:370–375

    PubMed  CAS  Google Scholar 

  • Cabib E, Farkas V, Kosik O, Blanco N, Arroyo J, Mcphie P (2008) Assembly of the yeast cell wall. Crh1p and Crh2p act as transglycosylases in vivo and in vitro. J Biol Chem 283:29859–29872

    PubMed  CAS  Google Scholar 

  • Cabib E, Kang MS (1987) Fungal 1,3-β-glucan synthase. Methods Enzymol 138:637–642

    PubMed  CAS  Google Scholar 

  • Cabib E, Roh DH, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679–19682

    PubMed  CAS  Google Scholar 

  • Carnero E, Ribas JC, García B, Durán A, Sánchez Y (2000) Schizosaccharomyces pombe Ehs1p is involved in maintaining cell wall integrity and in calcium uptake. Mol Gen Genet 264:173–183

    PubMed  CAS  Google Scholar 

  • Cartledge JD, Midgley J, Gazzard BG (1997) Clinically significant azole cross-resistance in Candida isolates from HIV-positive patients with oral candidosis. AIDS 11:1839–1844

    PubMed  CAS  Google Scholar 

  • Castro C, Ribas JC, Valdivieso MH, Varona R, Del Rey F, Durán A (1995) Papulacandin B resistance in budding and fission yeasts: isolation and characterization of a gene involved in (1,3)β-D-glucan synthesis in Saccharomyces cerevisiae. J Bacteriol 177:5732–5739

    PubMed  CAS  Google Scholar 

  • Cortés JCG, Carnero E, Ishiguro J, Sánchez Y, Durán A, Ribas JC (2005) The novel fission yeast (1,3)β-D-glucan synthase catalytic subunit Bgs4p is essential during both cytokinesis and polarized growth. J Cell Sci 118:157–174

    PubMed  Google Scholar 

  • Cortés JCG, Ishiguro J, Durán A, Ribas JC (2002) Localization of the (1,3)β-D-glucan synthase catalytic subunit homologue Bgs1p/Cps1p from fission yeast suggests that it is involved in septation, polarized growth, mating, spore wall formation and spore germination. J Cell Sci 115:4081–4096

    PubMed  Google Scholar 

  • Cortés JCG, Konomi M, Martins IM, Munoz J, Moreno MB, Osumi M, Durán A, Ribas JC (2007) The (1,3)β-D-glucan synthase subunit Bgs1p is responsible for the fission yeast primary septum formation. Mol Microbiol 65:201–217

    PubMed  Google Scholar 

  • Cortés JCG, Sato M, Muñoz J, Moreno MB, Clemente-Ramos JA, Ramos M, Okada H, Osumi M, Durán A, Ribas JC (2012) Fission yeast Ags1 confers the essential septum strength needed for safe gradual cell abscission. J Cell Biol 198:637–656

    PubMed  Google Scholar 

  • Chain E, Florey HW, Adelaide MB, Gardner AD, Heatley NG, Jennings MA, Orr-Ewing J, Sanders AG (1993) Penicillin as a chemotherapeutic agent (1940). Clin Orthop Relat Res 295:3–7

    Google Scholar 

  • Chapman SW, Sullivan DC, Cleary JD (2008) In search of the holy grail of antifungal therapy. Trans Am Clin Climatol Assoc 119:197–215 (discussion 215–216)

    Google Scholar 

  • Chen SC, Slavin MA, Sorrell TC (2011) Echinocandin antifungal drugs in fungal infections: a comparison. Drugs 71:11–41

    PubMed  CAS  Google Scholar 

  • Denning DW (2003) Echinocandin antifungal drugs. Lancet 362:1142–1151

    PubMed  CAS  Google Scholar 

  • Denning DW, Hope WW (2010) Therapy for fungal diseases: opportunities and priorities. Trends Microbiol 18:195–204

    PubMed  CAS  Google Scholar 

  • Deutschbauer AM, Williams RM, Chu AM, Davis RW (2002) Parallel phenotypic analysis of sporulation and postgermination growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 99:15530–15535

    PubMed  CAS  Google Scholar 

  • Díaz M, Sánchez Y, Bennett T, Sun CR, Godoy C, Tamanoi F, Durán A, Pérez P (1993) The Schizosaccharomyces pombe cwg2 + gene codes for the β subunit of a geranylgeranyltransferase type I required for β-glucan synthesis. EMBO J 12:5245–5254

    PubMed  Google Scholar 

  • Dijkgraaf GJ, Abe M, Ohya Y, Bussey H (2002) Mutations in Fks1p affect the cell wall content of β-1,3- and β-1,6-glucan in Saccharomyces cerevisiae. Yeast 19:671–690

    PubMed  CAS  Google Scholar 

  • Douglas CM (2001) Fungal β(1,3)-D-glucan synthesis. Med Mycol 39:55–66

    PubMed  CAS  Google Scholar 

  • Douglas CM, Foor F, Marrinan JA, Morin N, Nielsen JB, Dahl AM, Mazur P, Baginsky W, Li W, EL-Sherbeini M, Clemas JA, Mandala SM, Frommer BR, Kurtz MB (1994a) The Saccharomyces cerevisiae FKS1 (ETG1) gene encodes an integral membrane protein which is a subunit of 1,3-β-D-glucan synthase. Proc Natl Acad Sci U S A 91:12907–12911

    PubMed  CAS  Google Scholar 

  • Douglas CM, Marrinan JA, Li W, Kurtz MB (1994b) A Saccharomyces cerevisiae mutant with echinocandin-resistant 1,3-β-D-glucan synthase. J Bacteriol 176:5686–5696

    PubMed  CAS  Google Scholar 

  • Drgonova J, Drgon T, Tanaka K, Kollar R, Chen GC, Ford RA, Chan CS, Takai Y, Cabib E (1996) Rho1p, a yeast protein at the interface between cell polarization and morphogenesis. Science 272:277–279

    PubMed  CAS  Google Scholar 

  • Durán A, Pérez P (2004) Cell wall synthesis. In: Egel R (ed) Molecular biology of Schizosaccharomyces pombe. Genetics, genomics and beyond. Springer Verlag, Berlin

    Google Scholar 

  • Edwards JA, Alore EA, Rappleye CA (2011) The yeast-phase virulence requirement for α-glucan synthase differs among Histoplasma capsulatum chemotypes. Eukaryot Cell 10:87–97

    PubMed  CAS  Google Scholar 

  • El-Sherbeini M, Clemas JA (1995) Nikkomycin Z supersensitivity of an echinocandin-resistant mutant of Saccharomyces cerevisiae. Antimicrob Agents Chemother 39:200–207

    PubMed  CAS  Google Scholar 

  • Emri T, Majoros L, Toth V, Pocsi I (2013) Echinocandins: production and applications. Appl Microbiol Biotechnol 97:3267–3284

    PubMed  CAS  Google Scholar 

  • Feldmesser M, Kress Y, Mednick A, Casadevall A (2000) The effect of the echinocandin analogue caspofungin on cell wall glucan synthesis by Cryptococcus neoformans. J Infect Dis 182:1791–1795

    PubMed  CAS  Google Scholar 

  • Fleischhacker M, Radecke C, Schulz B, Ruhnke M (2008) Paradoxical growth effects of the echinocandins caspofungin and micafungin, but not of anidulafungin, on clinical isolates of Candida albicans and C. dubliniensis. Eur J Clin Microbiol Infect Dis 27:127–131

    PubMed  CAS  Google Scholar 

  • Fortwendel JR, Juvvadi PR, Pinchai N, Perfect BZ, Alspaugh JA, Perfect JR, Steinbach WJ (2009) Differential effects of inhibiting chitin and 1,3-(beta)-D-glucan synthesis in ras and calcineurin mutants of Aspergillus fumigatus. Antimicrob Agents Chemother 53:476–482

    PubMed  CAS  Google Scholar 

  • Free SJ (2013) Fungal cell wall organization and biosynthesis. Adv Genet 81:33–82

    PubMed  CAS  Google Scholar 

  • Fujie A, Iwamoto T, Sato B, Muramatsu H, Kasahara C, Furuta T, Hori Y, Hino M, Hashimoto S (2001) FR131535, a novel water-soluble echinocandin-like lipopeptide: synthesis and biological properties. Bioorg Med Chem Lett 11:399–402

    PubMed  CAS  Google Scholar 

  • García I, Tajadura V, Martín V, Toda T, Sánchez Y (2006) Synthesis of α-glucans in fission yeast spores is carried out by three α-glucan synthase paralogues, Mok12p, Mok13p and Mok14p. Mol Microbiol 59:836–853

    PubMed  Google Scholar 

  • Garrett-Engele P, Moilanen B, Cyert MS (1995) Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integrity defects and in mutants that lack a functional vacuolar H+-ATPase. Mol Cell Biol 15:4103–4114

    PubMed  CAS  Google Scholar 

  • Gaughran JP, Lai MH, Kirsch DR, Silverman SJ (1994) Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J Bacteriol 176:5857–5860

    PubMed  CAS  Google Scholar 

  • Granier F (2000) Invasive fungal infections. Epidemiology and new therapies. Presse Med 29:2051–2056

    PubMed  CAS  Google Scholar 

  • Grun CH, Hochstenbach F, Humbel BM, Verkleij AJ, Sietsma JH, Klis FM, Kamerling JP, Vliegenthart JF (2005) The structure of cell wall α-glucan from fission yeast. Glycobiology 15:245–257

    PubMed  Google Scholar 

  • Hector RF, Bierer DE (2011) New β-glucan inhibitors as antifungal drugs. Expert Opin Ther Pat 21:1597–1610

    PubMed  CAS  Google Scholar 

  • Henry C, Latge JP, Beauvais A (2011) α1,3 glucans are dispensable in Aspergillus fumigatus. Eukaryot Cell 11:26–29

    PubMed  Google Scholar 

  • Herrero AB, Magnelli P, Mansour MK, Levitz SM, Bussey H, Abeijon C (2004) KRE5 gene null mutant strains of Candida albicans are avirulent and have altered cell wall composition and hypha formation properties. Eukaryot Cell 3:1423–1432

    PubMed  CAS  Google Scholar 

  • Hill JA, Ammar R, Torti D, Nislow C, Cowen LE (2013) Genetic and genomic architecture of the evolution of resistance to antifungal drug combinations. PLoS Genet 9:e1003390

    PubMed  CAS  Google Scholar 

  • Hochstenbach F, Klis FM, Van Den Ende H, Van Donselaar E, Peters PJ, Klausner RD (1998) Identification of a putative α-glucan synthase essential for cell wall construction and morphogenesis in fission yeast. Proc Natl Acad Sci U SA 95:9161–9166

    CAS  Google Scholar 

  • Humbel BM, Konomi M, Takagi T, Kamasawa N, Ishijima SA, Osumi M (2001) In situ localization of β-glucans in the cell wall of Schizosaccharomyces pombe. Yeast 18:433–444

    PubMed  CAS  Google Scholar 

  • Inoue SB, Qadota H, Arisawa M, Watanabe T, Ohya Y (1999) Prenylation of Rho1p is required for activation of yeast 1, 3-β-glucan synthase. J Biol Chem 274:38119–38124

    PubMed  CAS  Google Scholar 

  • Inoue SB, Takewaki N, Takasuka T, Mio T, Adachi M, Fujii Y, Miyamoto C, Arisawa M, Furuichi Y, Watanabe T (1995) Characterization and gene cloning of 1,3-β-D-glucan synthase from Saccharomyces cerevisiae. Eur J Biochem 231:845–854

    PubMed  CAS  Google Scholar 

  • Ishiguro J, Saitou A, Durán A, Ribas JC (1997) cps1 +, a Schizosaccharomyces pombe gene homolog of Saccharomyces cerevisiae FKS genes whose mutation confers hypersensitivity to cyclosporin A and papulacandin B. J Bacteriol 179:7653–7662

    PubMed  CAS  Google Scholar 

  • Ishihara S, Hirata A, Nogami S, Beauvais A, Latge JP, Ohya Y (2007) Homologous subunits of 1,3-β-glucan synthase are important for spore wall assembly in Saccharomyces cerevisiae. Eukaryot Cell 6:143–156

    PubMed  CAS  Google Scholar 

  • Johnson ME, Edlind TD (2012) Topological and mutational analysis of Saccharomyces cerevisiae Fks1. Eukaryot Cell 11:952–960

    PubMed  CAS  Google Scholar 

  • Kaida K, Fudou R, Kameyama T, Tubaki K, Suzuki Y, Ojika M, Sakagami Y (2001) New cyclic depsipeptide antibiotics, clavariopsins A and B, produced by an aquatic hyphomycetes, Clavariopsis aquatica. 1. Taxonomy, fermentation, isolation, and biological properties. J Antibiot (Tokyo) 54:17–21

    CAS  Google Scholar 

  • Kang MS, Cabib E (1986) Regulation of fungal cell wall growth: a guanine nucleotide-binding proteinaceous component required for activity of (1,3)-β-D-glucan synthase. Proc Natl Acad Sci U S A 83:5808–5812

    PubMed  CAS  Google Scholar 

  • Kang MS, Szaniszlo PJ, Notario V, Cabib E (1986) The effect of papulacandin B on (1-3)-β-D-glucan synthetases. A possible relationship between inhibition and enzyme conformation. Carbohydr Res 149:13–21

    PubMed  CAS  Google Scholar 

  • Kapteyn JC, Ram AF, Groos EM, Kollar R, Montijn RC, Van Den Ende H, Llobell A, Cabib E, Klis FM (1997) Altered extent of cross-linking of β1,6-glucosylated mannoproteins to chitin in Saccharomyces cerevisiae mutants with reduced cell wall β1,3-glucan content. J Bacteriol 179:6279–6284

    PubMed  CAS  Google Scholar 

  • Katayama S, Hirata D, Arellano M, Pérez P, Toda T (1999) Fission yeast α-glucan synthase Mok1 requires the actin cytoskeleton to localize the sites of growth and plays an essential role in cell morphogenesis downstream of protein kinase C function. J Cell Biol 144:1173–1186

    PubMed  CAS  Google Scholar 

  • Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698

    PubMed  CAS  Google Scholar 

  • Katiyar SK, Edlind TD (2009) Role for Fks1 in the intrinsic echinocandin resistance of Fusarium solani as evidenced by hybrid expression in Saccharomyces cerevisiae. Antimicrob Agents Chemother 53:1772–1778

    PubMed  CAS  Google Scholar 

  • Kitamura A, Higuchi S, Hata M, Kawakami K, Yoshida K, Namba K, Nakajima R (2009a) Effect of β-1,6-glucan inhibitors on the invasion process of Candida albicans: potential mechanism of their in vivo efficacy. Antimicrob Agents Chemother 53:3963–3971

    PubMed  CAS  Google Scholar 

  • Kitamura A, Someya K, Hata M, Nakajima R, Takemura M (2009b) Discovery of a small-molecule inhibitor of β-1,6-glucan synthesis. Antimicrob Agents Chemother 53:670–677

    PubMed  CAS  Google Scholar 

  • Kitamura A, Someya K, Okumura R, Hata M, Takeshita H, Nakajima R (2010) In vitro antifungal activities of D11-2040, a beta-1,6-glucan inhibitor, with or without currently available antifungal drugs. Biol Pharm Bull 33:192–197

    PubMed  CAS  Google Scholar 

  • Klis FM, Boorsma A, De Groot PW (2006) Cell wall construction in Saccharomyces cerevisiae. Yeast 23:185–202

    PubMed  CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256

    PubMed  CAS  Google Scholar 

  • Kollar R, Petrakova E, Ashwell G, Robbins PW, Cabib E (1995) Architecture of the yeast cell wall. The linkage between chitin and β(1-3)-glucan. J Biol Chem 270:1170–1178

    PubMed  CAS  Google Scholar 

  • Kollar R, Reinhold BB, Petráková E, Yeh HJ, Ashwell G, Drgonová J, Kapteyn JC, Klis FM, Cabib E (1997) Architecture of the yeast cell wall. β(1-6)-glucan interconnects mannoprotein, β(1-3)-glucan, and chitin. J Biol Chem 272:17762–17775

    PubMed  CAS  Google Scholar 

  • Kondoh O, Inagaki Y, Fukuda H, Mizuguchi E, Ohya Y, Arisawa M, Shimma N, Aoki Y, Sakaitani M, Watanabe T (2005) Piperazine propanol derivative as a novel antifungal targeting 1,3-β-D-glucan synthase. Biol Pharm Bull 28:2138–2141

    PubMed  CAS  Google Scholar 

  • Kondoh O, Tachibana Y, Ohya Y, Arisawa M, Watanabe T (1997) Cloning of the RHO1 gene from Candida albicans and its regulation of β-1,3-glucan synthesis. J Bacteriol 179:7734–7741

    PubMed  CAS  Google Scholar 

  • Kondoh O, Takasuka T, Arisawa M, Aoki Y, Watanabe T (2002) Differential sensitivity between Fks1p and Fks2p against a novel β -1,3-glucan synthase inhibitor, aerothricin3. J Biol Chem 277:41744–41749

    PubMed  CAS  Google Scholar 

  • Kurtz MB, Rex JH (2001) Glucan synthase inhibitors as antifungal agents. Adv Protein Chem 56:423–475

    PubMed  CAS  Google Scholar 

  • Lai CC, Tan CK, Huang YT, Shao PL, Hsueh PR (2008) Current challenges in the management of invasive fungal infections. J Infect Chemother 14:77–85

    PubMed  CAS  Google Scholar 

  • Lamoth F, Juvvadi PR, Fortwendel JR, Steinbach WJ (2012) Heat shock protein 90 is required for conidiation and cell wall integrity in Aspergillus fumigatus. Eukaryot Cell 11:1324–1332

    PubMed  CAS  Google Scholar 

  • Latge JP (2007) The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290

    PubMed  CAS  Google Scholar 

  • Leal JA, Prieto A, Bernabe M, Hawksworth DL (2010) An assessment of fungal wall heteromannans as a phylogenetically informative character in ascomycetes. FEMS Microbiol Rev 34:986–1014

    PubMed  CAS  Google Scholar 

  • Lenardon MD, Munro CA, Gow NA (2010) Chitin synthesis and fungal pathogenesis. Curr Opin Microbiol 13:416–423

    PubMed  CAS  Google Scholar 

  • Lesage G, Bussey H (2006) Cell wall assembly in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 70:317–343

    PubMed  CAS  Google Scholar 

  • Levin DE (2011) Regulation of cell wall biogenesis in Saccharomyces cerevisiae: the cell wall integrity signaling pathway. Genetics 189:1145–1175

    PubMed  CAS  Google Scholar 

  • Liu J, Tang X, Wang H, Balasubramanian M (2000) Bgs2p, a 1,3-β-glucan synthase subunit, is essential for maturation of ascospore wall in Schizosaccharomyces pombe. FEBS Lett 478:105–108

    PubMed  CAS  Google Scholar 

  • Liu J, Tang X, Wang H, Oliferenko S, Balasubramanian MK (2002) The localization of the integral membrane protein Cps1p to the cell division site is dependent on the actomyosin ring and the septation-inducing network in Schizosaccharomyces pombe. Mol Biol Cell 13:989–1000

    PubMed  CAS  Google Scholar 

  • Lu P, Weaver VM, Werb Z (2012) The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196:395–406

    PubMed  CAS  Google Scholar 

  • Ma CM, Abe T, Komiyama T, Wang W, Hattori M, Daneshtalab M (2010) Synthesis, anti-fungal and 1,3-β-D-glucan synthase inhibitory activities of caffeic and quinic acid derivatives. Bioorg Med Chem 18:7009–7014

    PubMed  CAS  Google Scholar 

  • Maligie MA, Selitrennikoff CP (2005) Cryptococcus neoformans resistance to echinocandins: (1,3)β-glucan synthase activity is sensitive to echinocandins. Antimicrob Agents Chemother 49:2851–2856

    PubMed  CAS  Google Scholar 

  • Martín V, Ribas JC, Carnero E, Durán A, Sánchez Y (2000) bgs2 +, a sporulation-specific glucan synthase homologue is required for proper ascospore wall maturation in fission yeast. Mol Microbiol 38:308–321

    PubMed  Google Scholar 

  • Martins IM, Cortés JCG, Muñoz J, Moreno MB, Ramos M, Clemente-Ramos JA, Durán A, Ribas JC (2011) Differential activities of three families of specific β(1,3)glucan synthase inhibitors in wild-type and resistant strains of fission yeast. J Biol Chem 286:3484–3496

    PubMed  CAS  Google Scholar 

  • Mazur P, Baginsky W (1996) In vitro activity of 1,3-β-D-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem 271:14604–14609

    PubMed  CAS  Google Scholar 

  • Mazur P, Morin N, Baginsky W, El-Sherbeini M, Clemas JA, Nielsen JB, Foor F (1995) Differential expression and function of two homologous subunits of yeast 1,3-β-D-glucan synthase. Mol Cell Biol 15:5671–5681

    PubMed  CAS  Google Scholar 

  • Miyazaki M, Horii T, Hata K, Watanabe NA, Nakamoto K, Tanaka K, Shirotori S, Murai N, Inoue S, Matsukura M, Abe S, Yoshimatsu K, Asada M (2011) In vitro activity of E1210, a novel antifungal, against clinically important yeasts and molds. Antimicrob Agents Chemother 55:4652–4658

    PubMed  CAS  Google Scholar 

  • Montijn RC, Vink E, Muller WH, Verkleij AJ, Van Den Ende H, Henrissat B, Klis FM (1999) Localization of synthesis of β1,6-glucan in Saccharomyces cerevisiae. J Bacteriol 181:7414–7420

    PubMed  CAS  Google Scholar 

  • Munro CA (2013) Chitin and glucan, the yin and yang of the fungal cell wall, implications for antifungal drug discovery and therapy. Adv Appl Microbiol 83:145–172

    PubMed  CAS  Google Scholar 

  • Munro CA, Winter K, Buchan A, Henry K, Becker JM, Brown AJ, Bulawa CE, Gow NA (2001) Chs1 of Candida albicans is an essential chitin synthase required for synthesis of the septum and for cell integrity. Mol Microbiol 39:1414–1426

    PubMed  CAS  Google Scholar 

  • Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    PubMed  CAS  Google Scholar 

  • Oh Y, Chang KJ, Orlean P, Wloka C, Deshaies R, BI E (2012) Mitotic exit kinase Dbf2 directly phosphorylates chitin synthase Chs2 to regulate cytokinesis in budding yeast. Mol Biol Cell 23:2445–2456

    PubMed  CAS  Google Scholar 

  • Ohyama T, Kurihara Y, Ono Y, Ishikawa T, Miyakoshi S, Hamano K, Arai M, Suzuki T, Igari H, Suzuki Y, Inukai M (2000) Arborcandins A, B, C, D, E and F, novel 1,3-β-glucan synthase inhibitors: production and biological activity. J Antibiot (Tokyo) 53:1108–1116

    CAS  Google Scholar 

  • Onishi J, Meinz M, Thompson J, Curotto J, Dreikorn S, Rosenbach M, Douglas C, Abruzzo G, Flattery A, Kong L, Cabello A, Vicente F, Pelaez F, Diez MT, Martin I, Bills G, Giacobbe R, Dombrowski A, Schwartz R, Morris S, Harris G, Tsipouras A, Wilson K, Kurtz MB (2000) Discovery of novel antifungal (1,3)-β-D-glucan synthase inhibitors. Antimicrob Agents Chemother 44:368–377

    PubMed  CAS  Google Scholar 

  • Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH (2010) An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 9:719–727

    PubMed  CAS  Google Scholar 

  • Paderu P, Park S, Perlin DS (2004) Caspofungin uptake is mediated by a high-affinity transporter in Candida albicans. Antimicrob Agents Chemother 48:3845–3849

    PubMed  CAS  Google Scholar 

  • Page N, Gerard-Vincent M, Menard P, Beaulieu M, Azuma M, Dijkgraaf GJ, Li H, Marcoux J, Nguyen T, Dowse T, Sdicu AM, Bussey H (2003) A Saccharomyces cerevisiae genome-wide mutant screen for altered sensitivity to K1 killer toxin. Genetics 163:875–894

    PubMed  CAS  Google Scholar 

  • Parent SA, Nielsen JB, Morin N, Chrebet G, Ramadan N, Dahl AM, Hsu MJ, Bostian KA, Foor F (1993) Calcineurin-dependent growth of an FK506- and CsA-hypersensitive mutant of Saccharomyces cerevisiae. J Gen Microbiol 139:2973–2984

    PubMed  CAS  Google Scholar 

  • Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM (2009) Estimation of the current global burden of cryptococcal meningitis among persons living with HIV/AIDS. AIDS 23:525–530

    PubMed  Google Scholar 

  • Pelaez F, Cabello A, Platas G, Diez MT, Gonzalez Del Val A, Basilio A, Martan I, Vicente F, Bills GE, Giacobbe RA, Schwartz RE, Onish JC, Meinz MS, Abruzzo GK, Flattery AM, Kong L, Kurtz MB (2000) The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 23:333–343

    PubMed  CAS  Google Scholar 

  • Pérez P, Ribas JC (2004) Cell wall analysis. Methods 33:245–251

    PubMed  Google Scholar 

  • Perez P, Rincon SA (2010) Rho GTPases: regulation of cell polarity and growth in yeasts. Biochem J 426:243–253

    PubMed  CAS  Google Scholar 

  • Pérez P, Varona R, García-Acha I, Durán A (1981) Effect of papulacandin B and Aculeacin A on β-(1,3)glucan-synthase from Geotrichum lactis. FEBS Lett 129:249–252

    Google Scholar 

  • Perlin DS (2007) Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 10:121–130

    PubMed  CAS  Google Scholar 

  • Pfaller M, Riley J, Koerner T (1989) Effects of cilofungin (LY121019) on carbohydrate and sterol composition of Candida albicans. Eur J Clin Microbiol Infect Dis 8:1067–1070

    PubMed  CAS  Google Scholar 

  • Pfaller MA, Diekema DJ, Andes D, Arendrup MC, Brown SD, Lockhart SR, Motyl M, Perlin DS (2011a) Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 14:164–176

    PubMed  CAS  Google Scholar 

  • Pfaller MA, Duncanson F, Messer SA, Moet GJ, Jones RN, Castanheira M (2011b) In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Aspergillus spp. determined by CLSI and EUCAST broth microdilution methods. Antimicrob Agents Chemother 55:5155–5158

    PubMed  CAS  Google Scholar 

  • Pfaller MA, Hata K, Jones RN, Messer SA, Moet GJ, Castanheira M (2011c) In vitro activity of a novel broad-spectrum antifungal, E1210, tested against Candida spp. as determined by CLSI broth microdilution method. Diagn Microbiol Infect Dis 71:167–170

    PubMed  CAS  Google Scholar 

  • Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M (2013a) Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST). J Antimicrob Chemother 68:858–863

    PubMed  CAS  Google Scholar 

  • Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M (2013b) In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob Agents Chemother 57:1065–1068

    PubMed  CAS  Google Scholar 

  • Qadota H, Python CP, Inoue SB, Arisawa M, Anraku Y, Zheng Y, Watanabe T, Levin DE, Ohya Y (1996) Identification of yeast Rho1p GTPase as a regulatory subunit of 1,3-β-glucan synthase. Science 272:279–281

    PubMed  CAS  Google Scholar 

  • Ram AF, Brekelmans SS, Oehlen LJ, Klis FM (1995) Identification of two cell cycle regulated genes affecting the β1,3-glucan content of cell walls in Saccharomyces cerevisiae. FEBS Lett 358:165–170

    PubMed  CAS  Google Scholar 

  • Ribas JC, Díaz M, Durán A, Pérez P (1991a) Isolation and characterization of Schizosaccharomyces pombe mutants defective in cell wall (1-3)β-D-glucan. J Bacteriol 173:3456–3462

    PubMed  CAS  Google Scholar 

  • Ribas JC, Roncero C, Rico H, Durán A (1991b) Characterization of a Schizosaccharomyces pombe morphological mutant altered in the galactomannan content. FEMS Microbiol Lett 79:263–268

    CAS  Google Scholar 

  • Rocha EM, Garcia-Effron G, Park S, Perlin DS (2007) A Ser678Pro substitution in Fks1p confers resistance to echinocandin drugs in Aspergillus fumigatus. Antimicrob Agents Chemother 51:4174–4176

    PubMed  CAS  Google Scholar 

  • Roemer T, Bussey H (1991) Yeast β-glucan synthesis: KRE6 encodes a predicted type II membrane protein required for glucan synthesis in vivo and for glucan synthase activity in vitro. Proc Natl Acad Sci U S A 88:11295–11299

    PubMed  CAS  Google Scholar 

  • Roemer T, Paravicini G, Payton MA, Bussey H (1994) Characterization of the yeast (1– > 6)-β-glucan biosynthetic components, Kre6p and Skn1p, and genetic interactions between the PKC1 pathway and extracellular matrix assembly. J Cell Biol 127:567–579

    PubMed  CAS  Google Scholar 

  • Roncero C (2002) The genetic complexity of chitin synthesis in fungi. Curr Genet 41:367–378

    PubMed  CAS  Google Scholar 

  • Roncero C, Sanchez Y (2010) Cell separation and the maintenance of cell integrity during cytokinesis in yeast: the assembly of a septum. Yeast 27:521–530

    PubMed  CAS  Google Scholar 

  • Sable CA, Strohmaier KM, Chodakewitz JA (2008) Advances in antifungal therapy. Annu Rev Med 59:361–379

    PubMed  CAS  Google Scholar 

  • Schimoler-O’Rourke R, Renault S, Mo W, Selitrennikoff CP (2003) Neurospora crassa FKS protein binds to the (1,3)β-glucan synthase substrate UDP-glucose. Curr Microbiol 46:408–412

    PubMed  Google Scholar 

  • Schmidt M, Bowers B, Varma A, Roh DH, Cabib E (2002) In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J Cell Sci 115:293–302

    PubMed  CAS  Google Scholar 

  • Shahinian S, Bussey H (2000) β-1,6-glucan synthesis in Saccharomyces cerevisiae. Mol Microbiol 35:477–489

    PubMed  CAS  Google Scholar 

  • Strobel GA, Miller RV, Martinez-Miller C, Condron MM, Teplow DB, Hess, WM (1999) Cryptocandin, a potent antimycotic from the endophytic fungus Cryptosporiopsis cf. quercina. Microbiology 145(Pt 8):1919–1926

    Google Scholar 

  • Sudoh M, Yamazaki T, Masubuchi K, Taniguchi M, Shimma N, Arisawa M, Yamada-Okabe H (2000) Identification of a novel inhibitor specific to the fungal chitin synthase. Inhibition of chitin synthase 1 arrests the cell growth, but inhibition of chitin synthase 1 and 2 is lethal in the pathogenic fungus Candida albicans. J Biol Chem 275:32901–32905

    PubMed  CAS  Google Scholar 

  • Takeshita H, Watanabe J, Kimura Y, Kawakami K, Takahashi H, Takemura M, Kitamura A, Someya K, Nakajima R (2010) Novel pyridobenzimidazole derivatives exhibiting antifungal activity by the inhibition of beta-1,6-glucan synthesis. Bioorg Med Chem Lett 20:3893–3896

    PubMed  CAS  Google Scholar 

  • Traxler P, Gruner J, Auden JA (1977) Papulacandins, a new family of antibiotics with antifungal activity, I. Fermentation, isolation, chemical and biological characterization of papulacandins A, B, C, D and E. J Antibiot (Tokyo) 30:289–296

    CAS  Google Scholar 

  • Umeyama T, Kaneko A, Watanabe H, Hirai A, Uehara Y, Niimi M, Azuma M (2006) Deletion of the CaBIG1 gene reduces beta-1,6-glucan synthesis, filamentation, adhesion, and virulence in Candida albicans. Infect Immun 74:2373–2381

    PubMed  CAS  Google Scholar 

  • Urbina JM, Cortes JC, Palma A, Lopez SN, Zacchino SA, Enriz RD, Ribas JC, Kouznetzov VV (2000) Inhibitors of the fungal cell wall. Synthesis of 4-aryl-4-N-arylamine-1-butenes and related compounds with inhibitory activities on β(1-3) glucan and chitin synthases. Bioorg Med Chem 8:691–698

    PubMed  CAS  Google Scholar 

  • van der Kaaden M, Breukink E, Pieters RJ (2012) Synthesis and antifungal properties of papulacandin derivatives. Beilstein J Org Chem 8:732–737

    PubMed  Google Scholar 

  • Varona R, Pérez P, Durán A (1983) Effect of papulacandin B on β-glucan synthesis in Schizosaccharomyces pombe. FEMS Microbiol Lett 20:243–247

    CAS  Google Scholar 

  • Verma DP (2001) Cytokinesis and building of the cell plate in plants. Annu Rev Plant Physiol Plant Mol Biol 52:751–784

    PubMed  CAS  Google Scholar 

  • Verma DP, Hong Z (2001) Plant callose synthase complexes. Plant Mol Biol 47:693–701

    PubMed  CAS  Google Scholar 

  • Vicente MF, Basilio A, Cabello A, Pelaez F (2003) Microbial natural products as a source of antifungals. Clin Microbiol Infect 9:15–32

    PubMed  CAS  Google Scholar 

  • Vink E, Rodriguez-Suarez RJ, Gerard-Vincent M, Ribas JC, de Nobel H, van den Ende H, Durán A, Klis FM, Bussey H (2004) An in vitro assay for (1-6)-β-D-glucan synthesis in Saccharomyces cerevisiae. Yeast 21:1121–1131

    PubMed  CAS  Google Scholar 

  • Vos A, Dekker N, Distel B, Leunissen JA, Hochstenbach F (2007) Role of the synthase domain of Ags1p in cell wall alpha-glucan biosynthesis in fission yeast. J Biol Chem 282:18969–18979

    PubMed  CAS  Google Scholar 

  • Walker LA, Gow NA, Munro CA (2010) Fungal echinocandin resistance. Fungal Genet Biol 47:117–126

    PubMed  CAS  Google Scholar 

  • Walker LA, Munro CA, de Bruijn I, Lenardon MD, McKinnon A, Gow NA (2008) Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog 4:e1000040

    PubMed  Google Scholar 

  • Walker SS, Xu Y, Triantafyllou I, Waldman MF, Mendrick C, Brown N, Mann P, Chau A, Patel R, Bauman N, Norris C, Antonacci B, Gurnani M, Cacciapuoti A, McNicholas PM, Wainhaus S, Herr RJ, Kuang R, Aslanian RG, Ting PC, Black TA (2011) Discovery of a novel class of orally active antifungal β-1,3-D-glucan synthase inhibitors. Antimicrob Agents Chemother 55:5099–5106

    PubMed  CAS  Google Scholar 

  • Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF (2008) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46:327–360

    PubMed  CAS  Google Scholar 

  • White J, Bednarek S (2003) Cytokinesis: GAGs form the walls that separate our parts. Curr Biol 13:R717–R718

    PubMed  CAS  Google Scholar 

  • Wiederhold NP (2007) Attenuation of echinocandin activity at elevated concentrations: a review of the paradoxical effect. Curr Opin Infect Dis 20:574–578

    PubMed  CAS  Google Scholar 

  • Wiederhold NP, Kontoyiannis DP, Prince RA, Lewis RE (2005) Attenuation of the activity of Caspofungin at high concentrations against Candida albicans: possible role of cell wall integrity and calcineurin pathways. Antimicrob Agents Chemother 49:5146–5148

    PubMed  CAS  Google Scholar 

  • Yamaguchi H, Hiratani T, Baba M, Osumi M (1985) Effect of aculeacin A, a wall-active antibiotic, on synthesis of the yeast cell wall. Microbiol Immunol 29:609–623

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carlos G. Cortés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ribas, J.C., Durán, Á., Cortés, J.C.G. (2014). New Cell Wall-Affecting Antifungal Antibiotics. In: Villa, T., Veiga-Crespo, P. (eds) Antimicrobial Compounds. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40444-3_9

Download citation

Publish with us

Policies and ethics