Congdon, P. (2010). Applied Bayesian hierarchical methods. London: Chapman and Hall/CRC.
CrossRef
MATH
Google Scholar
Cressie, N., & Wikle, C. K. (2011). Statistics for spatio-temporal data. New York: Wiley.
MATH
Google Scholar
Efron, B., & Morris, C. N. (1972). Limiting the risk of Bayes and empirical Bayes estimators. Part II: The empirical Bayes case. Journal of the American Statistical Association, 67, 130–139.
MathSciNet
MATH
Google Scholar
Efron, B., & Morris, C. N. (1973). Stein’s estimation rule and its competitors: An empirical Bayes approach. Journal of the American Statistical Association, 68, 117–130.
MathSciNet
MATH
Google Scholar
Fay, R. E., & Herriot, R. A. (1979). Estimates of income for small places: An application of the James-Stein procedures to census data. Journal of the American Statistical Association, 74, 269–277.
MathSciNet
CrossRef
Google Scholar
Ghosh, M., & Rao, J. N. K. (1994). Small area estimation. An appraisal. Statistical Science, 9, 55–93.
MathSciNet
CrossRef
MATH
Google Scholar
Lawson, A. B. (2008). Bayesian disease mapping: Hierarchical modelling in spatial epidemiology. Boca Raton: CRC Press.
CrossRef
Google Scholar
Longford, N. T. (2004). Missing data and small area estimation in the UK labour force survey. Journal of the Royal Statistical Society Series A, 167, 341–373.
MathSciNet
CrossRef
Google Scholar
Longford, N. T. (2005). Missing data and small-area estimation. Analytical equipment for the survey statistician. New York: Springer.
Google Scholar
Longford, N. T. (2007). On standard errors of model-based small-area estimators. Survey Methodology, 33, 69–79.
Google Scholar
Longford, N. T. (2010). Small-area estimation with spatial similarity. Computational Statistics and Data Analysis, 54, 1151–1166.
MathSciNet
CrossRef
MATH
Google Scholar
Longford, N. T. (2011). Policy-related small-area estimation. CEPS Working Paper No. 2011–44. CEPS/INSTEAD, Esch-sur-Alzette, Luxembourg, 2011. Retrieved from http://www.ceps.lu/pdf/3/art1662.pdf
Longford, N. T. (2012a). Allocating a limited budget to small areas. Journal of Indian Society for Agricultural Statistics, 66, 31–41.
MathSciNet
Google Scholar
Longford, N. T. (2012b). Which model..? is the wrong question. Statistica Neerlandica, 66, 237–252.
MathSciNet
CrossRef
Google Scholar
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London: Chapman and Hall.
CrossRef
MATH
Google Scholar
Molina, I., Saei, A., & Lombardía, M. J. (2007). Small area estimates of labour force participation under a multinomial logit mixed model. Journal of the Royal Statistical Society Series A, 170, 975–1000.
CrossRef
Google Scholar
Rao, J. N. K. (2003). Small area estimation. New York: Wiley.
CrossRef
MATH
Google Scholar
Robbins, H. (1955). An empirical Bayes approach to statistics. In J. Neyman (Ed.), Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1 (pp. 157–164). Berkeley, CA: University of California Press.
Google Scholar
Shen, W., & Louis, T. A. (1998). Triple-goal estimates in two-stage hierarchical models. Journal of the Royal Statistical Society Series B, 60, 455–471.
MathSciNet
CrossRef
MATH
Google Scholar