Skip to main content

Small-Area Estimation

  • 2365 Accesses

Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)

Abstract

Small-area estimation (SAe) is concerned with inferences about the districts (subdomains) or another division of a country (the domain) when the subsample sizes for some subdomains are not large enough for reliable inferences about them to be based solely on the subsamples.

Keywords

  • Mean Square Error
  • Loss Function
  • Minimum Mean Square Error
  • Expected Loss
  • Populous District

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40433-7_7
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40433-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2

References

  • Congdon, P. (2010). Applied Bayesian hierarchical methods. London: Chapman and Hall/CRC.

    CrossRef  MATH  Google Scholar 

  • Cressie, N., & Wikle, C. K. (2011). Statistics for spatio-temporal data. New York: Wiley.

    MATH  Google Scholar 

  • Efron, B., & Morris, C. N. (1972). Limiting the risk of Bayes and empirical Bayes estimators. Part II: The empirical Bayes case. Journal of the American Statistical Association, 67, 130–139.

    MathSciNet  MATH  Google Scholar 

  • Efron, B., & Morris, C. N. (1973). Stein’s estimation rule and its competitors: An empirical Bayes approach. Journal of the American Statistical Association, 68, 117–130.

    MathSciNet  MATH  Google Scholar 

  • Fay, R. E., & Herriot, R. A. (1979). Estimates of income for small places: An application of the James-Stein procedures to census data. Journal of the American Statistical Association, 74, 269–277.

    MathSciNet  CrossRef  Google Scholar 

  • Ghosh, M., & Rao, J. N. K. (1994). Small area estimation. An appraisal. Statistical Science, 9, 55–93.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Lawson, A. B. (2008). Bayesian disease mapping: Hierarchical modelling in spatial epidemiology. Boca Raton: CRC Press.

    CrossRef  Google Scholar 

  • Longford, N. T. (2004). Missing data and small area estimation in the UK labour force survey. Journal of the Royal Statistical Society Series A, 167, 341–373.

    MathSciNet  CrossRef  Google Scholar 

  • Longford, N. T. (2005). Missing data and small-area estimation. Analytical equipment for the survey statistician. New York: Springer.

    Google Scholar 

  • Longford, N. T. (2007). On standard errors of model-based small-area estimators. Survey Methodology, 33, 69–79.

    Google Scholar 

  • Longford, N. T. (2010). Small-area estimation with spatial similarity. Computational Statistics and Data Analysis, 54, 1151–1166.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Longford, N. T. (2011). Policy-related small-area estimation. CEPS Working Paper No. 2011–44. CEPS/INSTEAD, Esch-sur-Alzette, Luxembourg, 2011. Retrieved from http://www.ceps.lu/pdf/3/art1662.pdf

  • Longford, N. T. (2012a). Allocating a limited budget to small areas. Journal of Indian Society for Agricultural Statistics, 66, 31–41.

    MathSciNet  Google Scholar 

  • Longford, N. T. (2012b). Which model..? is the wrong question. Statistica Neerlandica, 66, 237–252.

    MathSciNet  CrossRef  Google Scholar 

  • McCullagh, P., & Nelder, J. A. (1989). Generalized linear models (2nd ed.). London: Chapman and Hall.

    CrossRef  MATH  Google Scholar 

  • Molina, I., Saei, A., & Lombardía, M. J. (2007). Small area estimates of labour force participation under a multinomial logit mixed model. Journal of the Royal Statistical Society Series A, 170, 975–1000.

    CrossRef  Google Scholar 

  • Rao, J. N. K. (2003). Small area estimation. New York: Wiley.

    CrossRef  MATH  Google Scholar 

  • Robbins, H. (1955). An empirical Bayes approach to statistics. In J. Neyman (Ed.), Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 1 (pp. 157–164). Berkeley, CA: University of California Press.

    Google Scholar 

  • Shen, W., & Louis, T. A. (1998). Triple-goal estimates in two-stage hierarchical models. Journal of the Royal Statistical Society Series B, 60, 455–471.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas T. Longford .

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 The Author

About this chapter

Cite this chapter

Longford, N.T. (2013). Small-Area Estimation. In: Statistical Decision Theory. SpringerBriefs in Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40433-7_7

Download citation