Skip to main content

Estimating the Variance

  • 2369 Accesses

Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)

Abstract

This chapter deals with estimation of the variance of a normal distribution.

Keywords

  • Piecewise Linear Loss
  • Root MSE
  • Asymmetric Loss Function
  • Quadratic Loss
  • Normal Random Sample

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40433-7_3
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40433-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5

References

  • French, S., & Insua, D. R. (2004). Statistical decision theory. New York: Oxford University Press.

    Google Scholar 

  • Henderson, C. R. (1984a). Applications of linear models in animal breeding. Guelph: University of Guelph.

    Google Scholar 

  • Henderson, C. R. (1984b). ANOVA, MIVQUE, REML, and ML algorithms for estimation of variances and covariances. In H. A. David & H. T. David (Eds.), Statistics: An appraisal (pp. 257–280). Iowa State University.

    Google Scholar 

  • Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.

    CrossRef  MATH  Google Scholar 

  • Le Cam, L. (1986). Asymptotic methods in statistical decision theory. New York: Springer-Verlag.

    CrossRef  MATH  Google Scholar 

  • Liese, F., & Miescke, K. J. (2008). Statistical decision theory. Estimation, testing and selection. Springer-Verlag, New York.

    Google Scholar 

  • Longford, N. T. (2013). Assessment of precision with aversity to overstatement. South African Statistical Journal, 47, 49–59.

    MathSciNet  Google Scholar 

  • Markowitz, E. (1968). Minimum mean-square-error of estimation of the standard deviation of the normal distribution. The American Statistician, 22, 26.

    Google Scholar 

  • McCulloch, C. E., Searle, S. R., & Casella, G. (2006). Variance components (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Rapoport, A. (2010). Decision theory and decision behaviour. Dordrecht: Kluwer.

    Google Scholar 

  • Simon, M. K. (2004). Probability distributions involving Gaussian random variables. New York: Springer-Verlag.

    Google Scholar 

  • Stuart, A. (1969). Reduced mean-square-error estimation of \(\sigma ^p\) in normal samples. The American Statistician, 23, 27–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas T. Longford .

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 The Author

About this chapter

Cite this chapter

Longford, N.T. (2013). Estimating the Variance. In: Statistical Decision Theory. SpringerBriefs in Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40433-7_3

Download citation