Skip to main content

Estimating the Mean

  • 2395 Accesses

Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)

Abstract

This chapter deals with one of the elementary statistical problems, estimating the mean of a random sample from a normal distribution . We assume that the variance of this distribution is known. More general versions of this problem are addressed in later chapters.

Keywords

  • Loss Function
  • Standard Normal Distribution
  • Expected Loss
  • Unique Minimum
  • Quadratic Loss

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-40433-7_2
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   39.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-40433-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   54.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4

References

  • Aitchison, J., & Brown, J. A. C. (1957). The lognormal distribution. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  • Crow, E. L., & Shimizu, K. (Eds.). (1988). Lognormal distributions. New York: Theory and Applications. M. Dekker.

    Google Scholar 

  • Friedman, M., & Savage, L. J. (1948). The utility analysis of choices involving risk. Journal of Political Economy, 56, 279–304.

    CrossRef  Google Scholar 

  • Lange, K. (1999). Numerical analysis for statisticians. New York: Springer-Verlag.

    MATH  Google Scholar 

  • Le Cam, L. (1955). An extension of Wald’s theory of statistical decision functions. Annals of Mathematical Statistics, 26, 69–81.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Longford, N. T. (2009). Inference with the lognormal distribution. Journal of Statistical Planning and Inference, 139, 2329–2340.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Pratt, J. W., Raiffa, H., & Schlaifer, R. (1964). The foundations of decision under uncertainty: An elementary exposition. Journal of the American Statistical Association, 59, 353–375.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Pratt, J. W., Raiffa, H., & Schlaifer, R. (1995). Introduction to statistical decision theory. Cambridge: MIT Press.

    Google Scholar 

  • Press, W.H., Teukolsky, S.A., Vetterling, W.T., & Flannery, B.P. (2007). Numerical recipes: The art of scientific computing (3rd ed.). Cambridge University Press, New York.

    Google Scholar 

  • Seidenfeld, T. (1992). R. A. Fisher’s fiducial argument and Bayes’ theorem. Statistical Science, 7, 358–368.

    MathSciNet  CrossRef  MATH  Google Scholar 

  • Wald, A. (1950). Statistical decision functions. New York: Wiley.

    MATH  Google Scholar 

  • Zellner, A. (1986). Bayesian estimation and prediction using asymmetric loss functions. Journal of the American Statistical Association, 81, 446–451.

    MathSciNet  CrossRef  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas T. Longford .

Rights and permissions

Reprints and Permissions

Copyright information

© 2013 The Author

About this chapter

Cite this chapter

Longford, N.T. (2013). Estimating the Mean. In: Statistical Decision Theory. SpringerBriefs in Statistics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40433-7_2

Download citation