Skip to main content

Advanced Ultrasound: Prostate Elastography and Photoacoustic Imaging

  • Chapter
  • First Online:

Abstract

Conventional B-mode transrectal ultrasound (TRUS) is used extensively to aid in visualizing the prostate gland and needle during biopsy. However, TRUS has limited sensitivity and specificity for prostate cancer detection (Nelson et al. 2007; Correas et al. 2013), and therefore advanced ultrasonic methods are currently being investigated to improve prostate cancer detection.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal A, Huang SW, et al. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J Appl Physics. 2007;102(6):64701–4.

    Article  Google Scholar 

  • Ahmad S, Cao R, et al. Transrectal quantitative shear wave elastography in the detection and characterisation of prostate cancer. Surg Endosc. 2013;27(9):3280–7.

    Article  PubMed  Google Scholar 

  • Andreev VG, Ponomarev AE, et al. Detection of prostate cancer with opto-acoustic tomography. In: Biomedical Optics 2003. International Society for Optics and Photonics, San Jose, CA, 2003, p. 45–57.

    Google Scholar 

  • Barbone PE, Gokhale NH. Elastic modulus imaging: on the uniqueness and nonuniqueness of the elastography inverse problem in two dimensions. Inverse Probl. 2004;20(1):283–96.

    Article  Google Scholar 

  • Bauer DR, Olafsson R, et al. In vivo multi-modality photoacoustic and pulse echo tracking of prostate tumor growth using a window chamber. In: BiOS. International Society for Optics and Photonics, San Francisco, CA, 2010, p. 75643B–75643B–10.

    Google Scholar 

  • Bauer DR, Olafsson R, et al. 3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber. J Biomed Opt. 2011;16(2):26010–2.

    Article  Google Scholar 

  • Bercoff J, Tanter JM, Fink M. Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans Ultrason Ferroelectr Freq Control. 2004;51(4):396–409.

    Article  PubMed  Google Scholar 

  • Castaneda B, Hoyt K, et al. Performance of three-dimensional sonoelastography in prostate cancer detection: A comparison between ex vivo and in vivo experiments. In: 2009 IEEE International Ultrasonics symposium, Rome, Italy, Sept 2009, p. 519–22.

    Google Scholar 

  • Cochlin D, Ganatra R, Griffiths D. Elastography in the Detection of Prostatic Cancer. Clin Radiol. 2002;57(11):1014–20.

    Article  PubMed  Google Scholar 

  • Correas J-M, Tissier AM, et al. Ultrasound elastography of the prostate. State of the art. Diagn Interv Imaging. 2013;94(5):551–60.

    Article  PubMed  Google Scholar 

  • Eggener S, Salomon G, et al. Focal therapy for prostate cancer: possibilities and limitations. Eur urology. 2010;58(1):57–64.

    Article  Google Scholar 

  • Fehrenbach J. Influence of Poisson’s ratio on elastographic direct and inverse problems. Phys Med Biol. 2007;52(3):707–16.

    Article  PubMed  CAS  Google Scholar 

  • Feleppa EJ, Ketterling JA, et al. Ultrasonic tissue-type imaging (TTI) for planning treatment of prostate cancer. Med Imaging. 2004a;5373:223–30.

    Google Scholar 

  • Feleppa EJ, et al. Quantitative ultrasound in cancer imaging. Semin Oncol. 2011;38(1):136–50.

    Article  PubMed  Google Scholar 

  • Feleppa EJ, Porter CR, et al. Recent Developments in Tissue-Type Imaging (TTI) for Planning and Monitoring Treatment of Prostate Cancer. Ultrason Imaging. 2004b;26(3):163–72.

    Article  PubMed  Google Scholar 

  • Fleron M, Schol D, et al. Optoacoustic specific detection of prostate cancer using functionalized gold nanorods. Poster presentation. 2007.

    Google Scholar 

  • Gennisson JL, Deffieux T, et al. Viscoelastic and Anisotropic Mechanical Properties of in vivo Muscle Tissue Assessed by Supersonic Shear Imaging. Ultrasound Med Biol. 2010;36(5):789–801.

    Article  PubMed  Google Scholar 

  • Gusev VE, Karabutov AA, Hendzel K. Laser optoacoustics. New York: American Institute of Physics; 1993.

    Google Scholar 

  • Halpern EJ, Gomella LG, et al. Contrast enhanced transrectal ultrasound for the detection of prostate cancer: a randomized, double-blind trial of dutasteride pretreatment. J Urol. 2012;188(5):1739–45.

    Article  PubMed  CAS  Google Scholar 

  • Harrison T, Zemp RJ. Coregistered photoacoustic-ultrasound imaging applied to brachytherapy. J Biomed Opt. 2011;16(8):80502.

    Article  Google Scholar 

  • Harvey TJ, Henderson A, et al. Discrimination of prostate cancer cells by reflection mode FTIR photoacoustic spectroscopy. Analyst. 2007;132(4):292–5.

    Article  PubMed  CAS  Google Scholar 

  • Hoyt K, Castaneda B, et al. Tissue elasticity properties as biomarkers for prostate cancer. Cancer Biomark. 2008;4(4–5):213–25.

    PubMed  Google Scholar 

  • Ito H. Visualization of prostate cancer using dynamic contrast-enhanced MRI: comparison with transrectal power Doppler ultrasound. Br J Radiol. 2003;76(909):617–24.

    Article  PubMed  CAS  Google Scholar 

  • Kamoi K, Okihara K, et al. The utility of transrectal real-time elastography in the diagnosis of prostate cancer. Ultrasound Med Biol. 2008;34(7):1025–32.

    Article  PubMed  Google Scholar 

  • Kapoor A, Kapoor A, et al. Real-time elastography in the detection of prostate cancer in patients with raised PSA level. Ultrasound Med Biol. 2011;37(9):1374–81.

    Article  PubMed  Google Scholar 

  • Ke H, Guo Z, et al. Photoacoustic and thermoacoustic tomography of dog prostates. In: SPIE BiOS. International Society for Optics and Photonics, San Francisco, CA, 2011, p. 789936–789938.

    Google Scholar 

  • Kim G, Huang SW, et al. Indocyanine-green-embedded PEBBLEs as a contrast agent for photoacoustic imaging. J Biomed Opt. 2007;12(4):044020.

    Article  PubMed  Google Scholar 

  • Kothapalli S, Ma TJ, et al. Deep Tissue Photoacoustic Imaging Using a Miniaturized 2-D Capacitive Micromachined Ultrasonic Transducer Array. IEEE Trans Biomed Eng. 2012;59(5):1199–204.

    Article  PubMed  Google Scholar 

  • Kumon RE, Deng CX, Wang X. Frequency-domain analysis of photoacoustic imaging data from prostate adenocarcinoma tumors in a murine model. Ultrasound Med Biol. 2011;37(5):834–9.

    Article  PubMed  Google Scholar 

  • Kuo N, Kang HJ, et al. Real-time photoacoustic imaging of prostate brachytherapy seeds using a clinical ultrasound system. J Biomed Opt. 2012;17(6):660051–7.

    Article  Google Scholar 

  • Lizzi FL, Greenebaum M, et al. Theoretical framework for spectrum analysis in ultrasonic tissue characterization. J Acoust Soc Am. 1983;73(4):1366.

    Article  PubMed  CAS  Google Scholar 

  • Mahdavi S, Moradi M, et al. Evaluation of visualization of the prostate gland in vibro-elastography images. Med Image Anal. 2011;15(4):589–600.

    Article  PubMed  Google Scholar 

  • Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol. 2010;30(3):212–7.

    PubMed  Google Scholar 

  • Mitcham T, Homan K, et al. Modulation of Photoacoustic Signal Generation from Metallic Surfaces. J Biomed Opt. Prague, Czech Republic, 2013a;18(5):56008.

    Google Scholar 

  • Mitcham T, Marques T, et al. Transrectal photoacoustic-ultrasonic imaging enhancement through interstitial irradiation and targeted nanoparticles. In: Proceedings of the 2013 IEEE Ultrasonics symposium, Prague, Czech Republic, 2013b.

    Google Scholar 

  • Mitterberger MJ, Aigner F, et al. Comparative efficiency of contrast-enhanced colour Doppler ultrasound targeted versus systematic biopsy for prostate cancer detection. Eur Radiol. 2010;20(12):2791–6.

    Article  PubMed  Google Scholar 

  • Miyagawa T, Tsutsumi M, et al. Real-time elastography for the diagnosis of prostate cancer: evaluation of elastographic moving images. Japanese J Clin Oncol. 2009;39(6):394–8.

    Article  Google Scholar 

  • Miyanaga N, Akaza H, et al. Tissue elasticity imaging for diagnosis of prostate cancer: a preliminary report. Int J Urol. 2006;13(12):1514–8.

    Article  PubMed  Google Scholar 

  • Muller M, Gennisson JL, et al. Quantitative Viscoelasticity Mapping of Human Liver Using Supersonic Shear Imaging: Preliminary in vivo Feasibility Study. Ultrasound Med Biol. 2009;35(2):219–29.

    Article  PubMed  Google Scholar 

  • Nelson ED, Slotoroff CB, et al. Targeted biopsy of the prostate: the impact of color Doppler imaging and elastography on prostate cancer detection and Gleason score. Urology. 2007;70(6):1136–40.

    Article  PubMed  Google Scholar 

  • Nightingale KR, Soo M, et al. Acoustic radiation force impulse imaging: In vivo demonstration of clinical feasibility. Ultrasound Med Biol. 2002;28:227–35.

    Article  PubMed  Google Scholar 

  • Ophir O. Elastography: A quantitative method for imaging the elasticity of biological tissues. Ultrasonic Imaging. 1991;13(2):111–34.

    PubMed  CAS  Google Scholar 

  • Oraevsky A, Karabutov A. Optoacoustic tomography. In: Vo-Dinh T, editor. Biomedical photonics handbook. Boca Raton: CRC Press; 2003. p. 31–4.

    Google Scholar 

  • Pallwein L, Aigner F, et al. Prostate cancer diagnosis: value of real-time elastography. Abdom Imaging. 2008a;33(6):729–35.

    Article  PubMed  Google Scholar 

  • Pallwein L, Mitterberger M, et al. Ultrasound of prostate cancer: recent advances. Eur Radiol. 2008b;18(4):707–15.

    Article  PubMed  Google Scholar 

  • Pallwein L, Mitterberger M, et al. Sonoelastography of the prostate: comparison with systematic biopsy findings in 492 patients. Eur J Radiol. 2008c;65(2):304–10.

    Article  PubMed  Google Scholar 

  • Parker KJ, Doyley MM, Rubens DJ. Imaging the elastic properties of tissue: the 20 year perspective. Phys Med Biol. 2011;56(2):513.

    Article  Google Scholar 

  • Patterson MP, Arsenault M, et al. Optoacoustic imaging of an animal model of prostate cancer. In: BiOS. International Society for Optics and Photonics, San Francisco, CA, 2010, p. 75641B–75641B–5.

    Google Scholar 

  • Salcudean SE, French D, et al. Viscoelasticity modeling of the prostate region using vibro-elastography. Medical image computing and computer-assisted intervention : MICCAI. In: International conference on Medical Image Computing and Computer-Assisted Intervention. 2006:9(Pt 1):389–96.

    Google Scholar 

  • Salomon G, Kollerman J, et al. Evaluation of prostate cancer detection with ultrasound real-time elastography: a comparison with step section pathological analysis after radical prostatectomy. Euro Urol. 2008;54(6):1354–62.

    Article  Google Scholar 

  • Spirou GM, Vitkin IA, et al. Development and testing of an optoacoustic imaging system for monitoring and guiding prostate cancer therapies. In: Biomed Optics 2004. International Society for Optics and Photonics, San Jose, CA, 2004, p. 44–56.

    Google Scholar 

  • Su JL, Bouchard RR, et al. Photoacoustic imaging of prostate brachytherapy seeds. Biomed Opt Exp. 2011;2(8):2243.

    Google Scholar 

  • Tang J, Yang J, Li Y. Peripheral zone hypoechoic lesions of the prostate evaluation with contrast-enhanced gray scale transrectal ultrasonography. J Ultrasound Med. 2007;26(12):1671–9.

    PubMed  Google Scholar 

  • Tanter M, Bercoff J, et al. Quantitative assessment of breast lesion viscoelasticity: initial clinical results using supersonic shear imaging. Ultrasound Med Biol. 2008;34(9):1373–86.

    Article  PubMed  Google Scholar 

  • Taylor LS, Rubens DJ, et al. Prostate cancer: three-dimensional sonoelastography for in vitro detection. Radiology. 2005;237(3):981–5.

    Article  PubMed  Google Scholar 

  • Torr GR. The acoustic radiation force. Am J Phys. 1984;52:402–8.

    Article  Google Scholar 

  • Tsutsumi M, Miyagawa T. Real-time balloon inflation elastography for prostate cancer detection and initial evaluation of clinicopathologic analysis. Am J Roentgenol. 2010(6);471–6.

    Google Scholar 

  • Tsutsumi M, Miyagawa T, et al. The impact of real-time tissue elasticity imaging (elastography) on the detection of prostate cancer: clinicopathological analysis. Int J Clin Oncol. 2007;12(4):250–5.

    Article  PubMed  Google Scholar 

  • Turgay E, Salcudean S, Rohling R. Identifying the mechanical properties of tissue by ultrasound strain imaging. Ultrasound Med Biol. 2006;32(2):221–35.

    Article  PubMed  Google Scholar 

  • Viator JA, Gupta S, et al. Gold nanoparticle mediated detection of prostate cancer cells using photoacoustic flowmetry with optical reflectance. J Biomed Nanotechnol. 2010;6(2):187–91.

    Article  PubMed  CAS  Google Scholar 

  • Wang L. Photoacoustic imaging and spectroscopy, vol. 144. CRC Press, Boca Raton, FL; 2009.

    Google Scholar 

  • Wang X, Roberts WW, et al. Photoacoustic tomography: a potential new tool for prostate cancer. Biomed Opt Exp. 2010;1(4):1117.

    Article  Google Scholar 

  • Xie W, Li L, et al. Photoacoustic imaging of prostate cancer using cylinder diffuse radiation. In: Photonics Asia. International Society for Optics and Photonics, Beijing, China, 2012, p. 85532V–85532V–6.

    Google Scholar 

  • Yaseen MA, Ermilov SA, et al. Optoacoustic imaging of the prostate: development toward image-guided biopsy. J Biomed Opt. 2010;15(2):21310–8.

    Article  Google Scholar 

  • Zhai L, Dahl J, et al. Three-dimensional acoustic radiation force impulse (ARFI) imaging of human prostates in vivo. In: 2008 IEEE Ultrasonics symposium, Beijing, China, Nov 2008, p. 540–3.

    Google Scholar 

  • Zhai L, Madden J, et al. Characterizing stiffness of human prostates using acoustic radiation force. Ultrason Imaging. 2010a;32(4):201–13.

    Article  PubMed  Google Scholar 

  • Zhai L, Madden J, et al. Acoustic radiation force impulse imaging of human prostates ex vivo. Ultrasound Med Biol. 2010b;36(4):576–88.

    Article  PubMed  Google Scholar 

  • Zhai L, Madden J, et al. Correlation between SWEI and ARFI image findings in ex vivo human prostates. In: Ultrasonics Symposium (IUS) IEEE International, Rome, Italy, 2009, p. 523–6.

    Google Scholar 

  • Zhai L, Polascik TJ, et al. Acoustic radiation force impulse imaging of human prostates: initial in vivo demonstration. Ultrasound Med Biol. 2012;38(1):50–61.

    Article  PubMed  Google Scholar 

  • Zhang HF, Maslov K, et al. Imaging of hemoglobin oxygen saturation variations in single vessels in vivo using photoacoustic microscopy. Appl Phys Letters. 2007;90(5):53901–3.

    Article  Google Scholar 

  • Zhang M, Nigwekar P, Castaneda B. Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med Biol. 2008;34(7):1033–42.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Rosenzweig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rosenzweig, S., Bouchard, R., Polascik, T., Zhai, L., Nightingale, K. (2014). Advanced Ultrasound: Prostate Elastography and Photoacoustic Imaging. In: Bard, R., Fütterer, J., Sperling, D. (eds) Image Guided Prostate Cancer Treatments. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40429-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40429-0_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40428-3

  • Online ISBN: 978-3-642-40429-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics