Real-Time Behavioral Animation of Humanoid Non-Player Characters with a Computational Ecosystem

  • Rui Filipe Antunes
  • Frederic Fol Leymarie
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8108)

Abstract

A novel approach to a decentralized autonomous model of agency for general purpose Non-Player Characters (NPCs) is presented: Computational Ecosystems as a model of AI. We describe the technology used to animate a population of gregarious humanoid characters in the virtual world Where is Lourenco Marques? an ethnographic artistic work characterized as a virtual world inhabited by a population of NPCs interacting autonomously among themselves as well as with an audience of outsiders (human observers). First, we present the background and motivations for the project. Then, we describe the technical details about the algorithm that was developed to generate the movements and behaviors of a population of NPC ‘storytellers’. Finally, we layout some of the critical aspects of this particular implementation and contextualize the work with regards to a wider usage in virtual worlds.

Keywords

Multi-agent systems Simulation modelling and visualization Animation Computational Ecosystem Virtual Worlds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dorin, A.: Pandemic — Generative Software Installation, Exhibited: Bouillants 4, Vern-sur-Seiche, Brittany, France, Allin & Dupuis (artistic directors) (2012)Google Scholar
  2. 2.
    Eldridge, A., Dorin, A.: Filterscape: Energy Recycling in a Creative Ecosystem. In: Giacobini, M., et al. (eds.) EvoWorkshops 2009. LNCS, vol. 5484, pp. 508–517. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Antunes, R.F., Leymarie, F.F.: Generative Choreography: Animating in Real-Time Dancing Avatars. In: Machado, P., Romero, J., Carballal, A. (eds.) EvoMUSART 2012. LNCS, vol. 7247, pp. 1–10. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Shao, W., Terzopoulos, D.: Populating Reconstructed Archeological Sites with Autonomous Virtual Humans. In: Gratch, J., Young, M., Aylett, R.S., Ballin, D., Olivier, P. (eds.) IVA 2006. LNCS (LNAI), vol. 4133, pp. 420–433. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Maïm, J., Haegler, S., Yersin, B., Müller, P., Thalmann, D., Van Gool, L.J.: Populating Ancient Pompeii with Crowds of Virtual Romans. In: VAST, pp. 109–116 (2007)Google Scholar
  6. 6.
    Bogdanovych, A., Ijaz, K., Simoff, S.: The City of Uruk: Teaching Ancient History in a Virtual World. In: Nakano, Y., Neff, M., Paiva, A., Walker, M. (eds.) IVA 2012. LNCS, vol. 7502, pp. 28–35. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. 7.
    Huerre, S.: Agent–Based Crowd Simulation Tool for Theme Park Environments. In: 23rd Inter. Conf. on Comput. Anim. & Social Agents (CASA), Bournemouth University (2010)Google Scholar
  8. 8.
    Helbing, D.: A Fluid Dynamic Model for the Movement of Pedestrians. Complex Systems 6, 391–415 (1992)MathSciNetMATHGoogle Scholar
  9. 9.
    Banerjee, B., et al.: Advancing the layered approach to agent–based crowd simulation. In: 22nd Workshop on Principles of Adv. & Distrib. Simulation, PADS, pp. 185–192 (2008)Google Scholar
  10. 10.
    Reynolds, C.W.: Flocks, Herds and Schools: A Distributed Behavioral Model. ACM SIGGRAPH, Computer Graphics 21(4), 25–34 (1987)CrossRefGoogle Scholar
  11. 11.
    Pelechano, N.: et al.: Being a part of the crowd: Towards validating VR crowds using presence. In: Autonomous Agents & Multiagent Systems (AAMAS), pp. 136–142 (2008)Google Scholar
  12. 12.
    Pelechano, N., et al.: Virtual Crowds: Methods, Simulation, and Control. Synthesis Lectures on Computer Graphics and Animation. Morgan and Claypool (2008)Google Scholar
  13. 13.
    Thalmann, D., Musse, S.R.: Crowd Simulation. Springer (2007)Google Scholar
  14. 14.
    Jones, D.: AtomSwarm: A Framework for Swarm Improvisation. In: Giacobini, M., et al. (eds.) EvoWorkshops 2008. LNCS, vol. 4974, pp. 423–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Saruwatari, T., Toqunaga, Y., Hoshino, T.: ADIVERSITY: Stepping up trophic levels. In: 4th International Workshop on the Synthesis and Simulation of Living Systems, pp. 424–429 (1994)Google Scholar
  16. 16.
    Holland, J.: Hidden Order: How Adaptation Builds Complexity. Helix Books (1996)Google Scholar
  17. 17.
    McCormack, J.: Eden: An Evolutionary Sonic Ecosystem. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 133–142. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Forrest, S., Jones, T.: Modeling Complex Adaptive Systems with Echo. In: Stonier, R., Yu, X. (eds.) Complex Systems: Mechanisms of Adaptation, pp. 3–21. IOS Press, Amsterdam (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rui Filipe Antunes
    • 1
  • Frederic Fol Leymarie
    • 1
  1. 1.GoldsmithsUniversity of LondonUnited Kingdom

Personalised recommendations