Using a Parameterized Memory Model to Modulate NPC AI

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8108)


While there continues to be exciting developments in research related to virtual characters, improvements are still needed to create plausibly human-like behaviors. In this paper, we present a synthetic parameterized memory model which includes sensory, working, and long-term memories and mechanisms for acquiring and retrieving memories. With the aid of this model, autonomous virtual humans are able to perform more reasonable interactions with objects and agents in their environment. The memory model also facilitates emergent behaviors, enhances behavioral animation, and assists in creating heterogeneous populations. To demonstrate the effectiveness of the memory model, we also provide an example in a 3D game environment and have conducted a user study in which we found general guidance in determining parameter values for the memory model, resulting in NPCs with more human-like game playing performances.


Virtual Humans Memory Model Behavioral Animation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, J.R.: How Can the Human Mind Exist in the Physical Universe? Oxford University Press (2001)Google Scholar
  2. 2.
    Baddeley, A., Eysenck, M.W., Anderson, M.C.: Memory. Psychology Press, Taylor & Francis Inc. (2012)Google Scholar
  3. 3.
    Brom, C., Pešková, K., Lukavský, J.: What does your actor remember? Towards characters with a full episodic memory. In: Cavazza, M., Donikian, S. (eds.) ICVS 2007. LNCS, vol. 4871, pp. 89–101. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  4. 4.
    Burke, R., Isla, D., Downie, M., Ivanov, Y., Blumberg, B.: Creature smarts: The art and architecture of a virtual brain. In: Proceedings of the Computer Game Developers Conference, pp. 147–166 (2001)Google Scholar
  5. 5.
    Cha, M., Cho, K., Um, K.: Design of memory architecture for autonomous virtual characters using visual attention and quad-graph. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 691–696 (2009)Google Scholar
  6. 6.
    Deutsch, T., Gruber, A., Lang, R., Velik, R.: Episodic memory for autonomous agents. In: Proceedings of the Fifth International Conference on Human Systems Interaction, pp. 621–626 (2008)Google Scholar
  7. 7.
    Dias, J., Ho, W.C., Vogt, T., Beeckman, N., Paiva, A., André, E.: I know what I did last summer: Autobiographic memory in synthetic characters. In: Paiva, A., Prada, R., Picard, R.W. (eds.) ACII 2007. LNCS, vol. 4738, pp. 606–617. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Dodd, W.: The design of procedural, semantic and episodic memory systems for a cognitive robot. Master thesis. Vanderbilt University. Nashville, TN, USA (2005)Google Scholar
  9. 9.
    Ebbinghaus, H.: Memory: A Contribution to Experimental Psychology (1964)Google Scholar
  10. 10.
    Franklin, S., Patterson Jr., F.G.: The lida architecture: adding new modes of learning to an intelligent, autonomous, software agents. In: LDPT 2006 Prceedings (Intergrated Design and Process Technology): Society for Design and Process Science (2006)Google Scholar
  11. 11.
    Gomes, P.F., Martinho, C., Paiva, A.: I’ve been here before! location and appraisal in memory retrieval. In: Proceedings of the Tenth International Conference on Autonomous Agents and Multiagent Systems, AAMAS 2011, pp. 1039–1046 (2011)Google Scholar
  12. 12.
    Ho, W.C., Dias, J., Figueiredo, R., Paiva, A.: Agents that remember can tell stories: integrating autobiographic memory into emotional agents. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2007, pp. 10:1–10:3 (2007)Google Scholar
  13. 13.
    Kuffner Jr., J.J., Latombe, J.C.: Fast synthetic vision, memory, and learning models for virtual humans. In: Proceedings of Computer Animation 1999, pp. 118–127 (1999)Google Scholar
  14. 14.
    Laird, J.: The Soar Cognitive Architecture. The MIT Press (2012)Google Scholar
  15. 15.
    Laird, J.: Using a computer game to develop advanced ai. Computer, 70–75 (2001)Google Scholar
  16. 16.
    Li, W., Allbeck, J.M.: The virtual apprentice. In: Nakano, Y., Neff, M., Paiva, A., Walker, M. (eds.) IVA 2012. LNCS, vol. 7502, pp. 15–27. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  17. 17.
    Lim, M.Y.: Memory models for intelligent social companions. In: Zacarias, M., de Oliveira, J.V. (eds.) Human-Computer Interaction. SCI, vol. 396, pp. 241–262. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Mateas, M.: Interactive drama, art and artificial intelligence. Ph.D. thesis. Carnegie Mellon University. Pittsburgh, PA, USA (2002)Google Scholar
  19. 19.
    Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review 63(2), 81–97 (1956)CrossRefGoogle Scholar
  20. 20.
    Minsky, M.: The Society of Mind. Simon and Schuster (1986)Google Scholar
  21. 21.
    Noser, H., Renault, O., Thalmann, D., Thalmann, N.M.: Navigation for digital actors based on synthetic vision, memory, and learning. Computers & Graphics 19(1), 7–19 (1995)CrossRefGoogle Scholar
  22. 22.
    Nuxoll, A.M.: Enhancing intelligent agents with episodic memory. Ph.D thesis. University of Michigan, Ann Arbor, MI, USA (2007)Google Scholar
  23. 23.
    Pelechano, N., O’Brien, K., Silverman, B., Badler, N.I.: Crowd simulation incorporating agent psychological models, roles and communication. In: First International Workshop on Crowd Simulation, pp. 21–30 (2005)Google Scholar
  24. 24.
    Peters, C., O’sullivan, C.: A memory model for autonomous virtual humans. In: Proceedings of Eurographics Irish Chapter Workshop, EGIreland 2002 (2002)Google Scholar
  25. 25.
    Rickel, J., Johnson, W.L.: Animated agents for procedural training in virtual reality: Perception, cognition, and motor control. Applied Artificial Intelligence 13(4-5), 343–382 (1999)CrossRefGoogle Scholar
  26. 26.
    Ruttkay, Z., Reidsma, D., Nijholt, A.: Human computing, virtual humans and artificial imperfection. In: Proceedings of the 8th International Conference on Multimodal Interfaces (ICMI), pp. 179–184 (2006)Google Scholar
  27. 27.
    Schacter, D.L.: The Seven Sins of Memory. Houghton Mifflin Company, New York (2001)Google Scholar
  28. 28.
    Sternberg, S.: High-speed scanning in human memory. Science 153, 652–654 (1966)CrossRefGoogle Scholar
  29. 29.
    Sun, R.: The CLARION cognitive architecture: extending cognitive modeling to social simulation. In: Sun, R. (ed.) Cognition and Multi-Agent Interaction. Cambridge University Press (2006)Google Scholar
  30. 30.
    Thomas, R., Donikian, S.: A spatial cognitive map and a human-like memory model dedicated to pedestrian navigation in virtual urban environments. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition V. LNCS (LNAI), vol. 4387, pp. 421–438. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  31. 31.
    Tulving, E.: Elements of episodic memory, vol. 2. Clarendon Press (1983)Google Scholar
  32. 32.
    Williams, H.L., Conway, M.A., Cohen, G.: Autobiographical memory. In: Cohen, G., Conway, M. (eds.) Memory in the Real World, 3rd edn., pp. 21–90 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratory for Games and Intelligent AnimationGeorge Mason UniversityFairfaxUSA

Personalised recommendations