Skip to main content

Medical Image Computing for Oncology: Review and Clinical Examples

  • Chapter
  • First Online:
Book cover Functional Imaging in Oncology
  • 1683 Accesses

Abstract

Medical imaging has been widely used in clinical and preclinical assessment of cancer. This chapter describes the techniques and components of medical image computing for oncological applications and introduces two representative applications of medical image computing in cancer. First, image computing tools such as volumetric MRI brain image segmentation are presented for computer-aided diagnosis and follow-up of glioblastoma multiforme (GBM) treatment. Then, using PET/CT imaging, quantitative monitoring of patients undergoing adoptive cytotoxic T lymphocytes (CTL) therapy is described. In addition, we also discuss that the trend in this area is to integrate microscopy imaging that captures cellular and tissue-level morphometry and molecular activities with medical images of organ and tissue-level properties to help better diagnose, subtype, and quantify the formulation, progression, and mechanisms of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFINITI:

Assisted Follow-up in NeuroImaging of Therapeutic Intervention

BWH:

Brigham Women’s Hospital

CT:

Computed tomography

CTL:

Cytotoxic T-lymphocytes

DICOM:

Digital Imaging and Communications in Medicine

EBV:

Epstein Barr virus

FCM:

Fuzzy C-means

FDG:

Fluorodeoxyglucose

FFD:

Free-Form Deformations

FLAI:

Fluid-attenuated inversion recovery

GBM:

Glioblastoma multiforme

GUI:

Graphical user interface

HD:

Hodgkin's disease

ITK:

Insight Toolkit

LINA:

Longitudinal Image Navigation and Analysis

LMP:

Latent membrane protein

MRI:

Magnetic resonance imaging

NHL:

Non-Hodgkin’s lymphoma

PACS:

Picture Archiving and Communication Systems

PFS:

Progression free survival

PICE:

Prior Information Constrained Evolution

QI:

Quantitative Index

ROI:

Region of Interest

ROI:

Regions of interest

SMD:

Statistical model of deformation

SUV:

Standard uptake value

References

  1. Wong ST, Huang HK. Design methods and architectural issues of integrated medical image data base systems. Comput Med Imaging Graph. 1996;20(4):285–99. Epub 1996/07/01.

    Article  PubMed  CAS  Google Scholar 

  2. Wong ST, et al. Design and applications of a multimodality image data warehouse framework. J Am Med Inform Assoc. 2002;9(3):239–54. Epub 2002/04/25.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Stupp R, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  PubMed  CAS  Google Scholar 

  4. Van Meir EG, et al. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. Cancer J Clin. 2010;60(3):166–93.

    Article  Google Scholar 

  5. Topkan E, et al. Pseudoprogression in patients with glioblastoma multiforme after concurrent radiotherapy and temozolomide. Am J Clin Oncol. 2012;35(3):284–9.

    Article  PubMed  Google Scholar 

  6. Pope WB, et al. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology. 2006;66(8):1258–60.

    Article  PubMed  CAS  Google Scholar 

  7. Vredenburgh JJ, et al. Phase II trial of bevacizumab and irinotecan in recurrent malignant glioma. Clin Cancer Res. 2007;13(4):1253–9.

    Article  PubMed  CAS  Google Scholar 

  8. Vredenburgh JJ, et al. Bevacizumab plus irinotecan in recurrent glioblastoma multiforme. J Clin Oncol. 2007;25(30):4722–9.

    Article  PubMed  CAS  Google Scholar 

  9. Norden AD, et al. Bevacizumab for recurrent malignant gliomas: efficacy, toxicity, and patterns of recurrence. Neurology. 2008;70(10):779–87.

    Article  PubMed  CAS  Google Scholar 

  10. Macdonald DR, et al. Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol. 1990;8(7):1277–80.

    PubMed  CAS  Google Scholar 

  11. Wen PY, et al. Updated response assessment criteria for high-grade gliomas: response assessment in neuro-oncology working group. J Clin Oncol. 2010;28(11):1963–72.

    Article  PubMed  Google Scholar 

  12. Galanis E, et al. Validation of neuroradiologic response assessment in gliomas: measurement by RECIST, two-dimensional, computer-assisted tumor area, and computer-assisted tumor volume methods. Neuro Oncol. 2006;8(2):156–65.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Sorensen AG, et al. Comparison of diameter and perimeter methods for tumor volume calculation. J Clin Oncol. 2001;19(2):551–7.

    PubMed  CAS  Google Scholar 

  14. Gladwish A, et al. Evaluation of early imaging response criteria in glioblastoma multiform. Radiat Oncol. 2011;6:1–7.

    Article  Google Scholar 

  15. Ellingson BM, et al. Quantitative volumetric analysis of conventional MRI response in recurrent glioblastoma treated with bevacizumab. Neuro Oncol. 2011;13(4):401–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Corso JJ, et al. Efficient multilevel brain tumor segmentation with integrated Bayesian model classification. IEEE Trans Med Imaging. 2008;27(5):629–40.

    Article  PubMed  CAS  Google Scholar 

  17. Vaidyanathan M, et al. Monitoring brain tumor response to therapy using MRI segmentation. Magn Reson Imaging. 1997;15(3):323–34.

    Article  PubMed  CAS  Google Scholar 

  18. Vaidyanathan M, et al. Comparison of supervised MRI segmentation methods for tumor volume determination during therapy. Magn Reson Imaging. 1995;13(5):719–28.

    Article  PubMed  CAS  Google Scholar 

  19. Fletcher-Heath LM, et al. Automatic segmentation of non-enhancing brain tumors in magnetic resonance images. Artif Intell Med. 2001;21(1–3):43–63.

    Article  PubMed  CAS  Google Scholar 

  20. Phillips 2nd WE, et al. Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme. Magn Reson Imaging. 1995;13(2):277–90.

    Article  PubMed  Google Scholar 

  21. Moonis G, et al. Estimation of tumor volume with fuzzy-connectedness segmentation of MR images. AJNR Am J Neuroradiol. 2002;23(3):356–63.

    PubMed  Google Scholar 

  22. Emblem KE, et al. Automatic glioma characterization from dynamic susceptibility contrast imaging: brain tumor segmentation using knowledge-based fuzzy clustering. J Magn Reson Imaging. 2009;30(1):1–10.

    Article  PubMed  Google Scholar 

  23. Clark MC, et al. Automatic tumor segmentation using knowledge-based techniques. IEEE Trans Med Imaging. 1998;17(2):187–201.

    Article  PubMed  CAS  Google Scholar 

  24. Prastawa M, et al. A brain tumor segmentation framework based on outlier detection. Med Image Anal. 2004;8(3):275–83.

    Article  PubMed  Google Scholar 

  25. Prastawa M, et al. Automatic brain tumor segmentation by subject specific modification of atlas priors. Acad Radiol. 2003;10(12):1341–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kaus MR, et al. Automated segmentation of MR images of brain tumors. Radiology. 2001;218(2):586–91.

    Article  PubMed  CAS  Google Scholar 

  27. Warfield SK, et al. Adaptive, template moderated, spatially varying statistical classification. Med Image Anal. 2000;4(1):43–55.

    Article  PubMed  CAS  Google Scholar 

  28. Kass M, et al. Snakes: active contour models. Int J Comput Vis. 1988;1:321–31.

    Article  Google Scholar 

  29. Rivest-Henault D, Cheriet M. Unsupervised MRI segmentation of brain tissues using a local linear model and level set. Magn Reson Imaging. 2011;29(2):243–59.

    Article  PubMed  Google Scholar 

  30. Wang L, et al. Level set segmentation of brain magnetic resonance images based on local Gaussian distribution fitting energy. J Neurosci Methods. 2010;188(2):316–25.

    Article  PubMed  Google Scholar 

  31. Chen Y, et al. An improved level set method for brain MR images segmentation and bias correction. Comput Med Imaging Graph. 2009;33(7):510–9.

    Article  PubMed  Google Scholar 

  32. Hu S, Collins DL. Joint level-set shape modeling and appearance modeling for brain structure segmentation. Neuroimage. 2007;36(3):672–83.

    Article  PubMed  Google Scholar 

  33. Cheng L, et al. A generalized level set formulation of the Mumford-Shah functional for brain MR image segmentation. Inf Process Med Imaging. 2005;19:418–30.

    PubMed  Google Scholar 

  34. Vese LA, Chan TF. A multiphase level set framework for image segmentation using the Mumford and Shah model. Int J Comput Vis. 2002;50(3):271–93.

    Article  Google Scholar 

  35. Cheng LS, et al. A generalized level set formulation of the Mumford-Shah functional with shape prior for medical image segmentation. Comput Vis Biomed Image Appl Proc. 2005;3765:61–71.

    Article  Google Scholar 

  36. Dydenko I, et al. A level set framework with a shape and motion prior for segmentation and region tracking in echocardiography. Med Image Anal. 2006;10(2):162–77.

    Article  PubMed  Google Scholar 

  37. Rousson M, Cremers D. Efficient kernel density estimation of shape and intensity priors for level set segmentation. Med Image Comput Comput Assist Interv. 2005;8(Pt 2):757–64.

    PubMed  Google Scholar 

  38. Smith SM, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208–19.

    Article  PubMed  Google Scholar 

  39. Woolrich MW, et al. Bayesian analysis of neuroimaging data in FSL. Neuroimage. 2009;45(1 Suppl):S173–86.

    Article  PubMed  Google Scholar 

  40. Yushkevich PA, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):1116–28.

    Article  PubMed  Google Scholar 

  41. Zhu Y, et al. Semi-automatic segmentation software for quantitative clinical brain glioblastoma evaluation. Acad Radiol. 2012;19(8):977–85.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, et al. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging. 2001;20(1):45–57.

    Article  PubMed  CAS  Google Scholar 

  43. Xue X, et al., editors. PICE: prior information constrained evolution for 3-D and 4-D brain tumor segmentation. In: IEEE International Symposium on Biomedical Imaging; Rotterdam, The Netherlands. 2010.

    Google Scholar 

  44. Jemal A, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  45. Morton LM, et al. Proposed classification of lymphoid neoplasms for epidemiologic research from the Pathology Working Group of the International Lymphoma Epidemiology Consortium (InterLymph). Blood. 2007;110(2):695–708.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Hoppe R, et al. Hodgkin lymphoma. Philadelphia: Lippincott Williams & Wilkins; 2007.

    Google Scholar 

  47. Bollard CM, et al. Cytotoxic T lymphocyte therapy for Epstein-Barr virus + Hodgkin’s disease. J Exp Med. 2004;200(12):1623–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Dudley ME, Rosenberg SA. Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev. 2003;3(9):666–75.

    Article  CAS  Google Scholar 

  49. Yee C, et al., editors. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci USA. 2002;99(25):16168–173.

    Google Scholar 

  50. Straathof KC, et al. Treatment of nasopharyngeal carcinoma with Epstein-Barr virus–specific T lymphocytes. Blood. 2005;105(5):1898–904.

    Article  PubMed  CAS  Google Scholar 

  51. Heslop HE, et al. Long-term restoration of immunity against Epstein-Barr virus infection by adoptive transfer of gene-modified virus-specific T lymphocytes. Nat Med. 1996;2(5):551–5.

    Article  PubMed  CAS  Google Scholar 

  52. Bollard CM, et al. Complete responses of relapsed lymphoma following genetic modification of tumor-antigen presenting cells and T-lymphocyte transfer. Blood. 2007;110(8):2838–45.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Antoch G, et al. A radiologist’s perspective on dual-modality PET/CT: optimized CT scanning protocols and their effect on PET quality. J Nucl Med. 2002;43(5):307.

    Google Scholar 

  54. Bar-Shalom R, et al. Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med. 2003;44(8):1200–9.

    PubMed  Google Scholar 

  55. Coleman RE, et al. Concurrent PET/CT with an integrated imaging system: Intersociety dialogue from the joint working group of the American College of Radiology, the Society of Nuclear Medicine, and the Society of Computed Body Tomography and Magnetic Resonance. J Nucl Med. 2005;46(7):1225–39.

    PubMed  Google Scholar 

  56. Ell PJ. The contribution of PET/CT to improved patient management. Br J Radiol. 2006;79(937):32–6.

    Article  PubMed  CAS  Google Scholar 

  57. Farma JM, et al. PET/CT fusion scan enhances CT staging in patients with pancreatic neoplasms. Ann Surg Oncol. 2008;15(9):2465–71.

    Article  PubMed  Google Scholar 

  58. Sironi S, et al. Integrated FDG PET/CT in patients with persistent ovarian cancer: correlation with histologic findings. Radiology. 2004;233(2):433–40.

    Article  PubMed  Google Scholar 

  59. Schiepers C, et al. PET for staging of Hodgkin’s disease and non-Hodgkin’s lymphoma. Eur J Nucl Med Mol Imaging. 2003;30 Suppl 1:S82–8.

    Article  PubMed  CAS  Google Scholar 

  60. Ngeow JY, et al. High SUV uptake on FDG-PET/CT predicts for an aggressive B-cell lymphoma in a prospective study of primary FDG-PET/CT staging in lymphoma. Ann Oncol. 2009;20(9):1543–7.

    Article  PubMed  CAS  Google Scholar 

  61. Kostakoglu L, Goldsmith SJ. F-18-FDG PET evaluation of the response to therapy for lymphoma and for breast, lung, and colorectal carcinoma. J Nucl Med. 2003;44(2):224–39.

    PubMed  Google Scholar 

  62. Kuo PH, et al. FDG-PET/CT for the evaluation of response to therapy of cutaneous T-cell lymphoma to vorinostat (suberoylanilide hydroxamic acid, SAHA) in a phase II trial. Mol Imaging Biol. 2008;10(6):306–14.

    Article  PubMed  Google Scholar 

  63. De Barsy C, et al. Whole-body FDG PET imaging as a method for staging and early assessment of treatment response in pediatric patients with lymphoma. J Nucl Med. 2003;44(5):346.

    Google Scholar 

  64. Eich HT, et al. FDG-PET for treatment response assessment in advanced stage Hodgkin lymphoma - report on the 2nd interim analysis of GHSG trial HD15. Strahlenther Onkol. 2008;184:11.

    Google Scholar 

  65. Moulin-Romsee G, et al. Cost-effectiveness of early treatment response assessment by PET in non-Hodgkin lymphoma. Eur J Nucl Med Mol Imaging. 2007;34:S242-S.

    Google Scholar 

  66. Pregno P, et al. Response assessment in aggressive non Hodgkin lymphoma disease: predictive value of mid-treatment evaluation by 18-FDG-positron emission tomography/computed tomography (PET). Ann Oncol. 2008;19:249–50.

    Google Scholar 

  67. Pregno P, et al. Predictive value of response assessment with mid-treatment evaluation of 18-FDG-positron emission tomography/complited tomography (PET) in aggressive non Hodgkin lymphoma (NHL). Haematol Hematol J. 2007;92:59–60.

    Article  Google Scholar 

  68. Stroobants S, et al. PET-CT for treatment response assessment in lymphoma. Haematol Hematol J. 2007;92:20.

    Article  Google Scholar 

  69. Yan JY, et al. Automated matching and segmentation of lymphoma on serial CT examinations. Med Phys. 2007;34(1):55–62.

    Article  PubMed  Google Scholar 

  70. Pekar V, et al., inventors; Koninklijke Philips Electronics N.V., assignee. 3D image segmentation. NLMay 2009. US patent No. 20060159341-A1.

    Google Scholar 

  71. Sofka M, Stewart CV. Location registration and recognition (LRR) for longitudinal evaluation of corresponding regions in CT volumes. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2008;11(Pt 2):989–97.

    Google Scholar 

  72. Duncan J, Ayache N. Medical image analysis: progress over two decades and the challenges ahead. IEEE Trans Pattern Anal Mach Intell. 2000;22:85–106.

    Article  Google Scholar 

  73. Rueckert D, et al. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans Med Imaging. 1999;18(8):712–21.

    Article  PubMed  CAS  Google Scholar 

  74. Marsland S, et al. A minimum description length objective function for group-wise non-rigid image registration. Image Vis Comput. 2008;26(3):333–46.

    Article  Google Scholar 

  75. Xue Z, et al. Joint registration and segmentation of serial lung CT images for image-guided lung cancer diagnosis and therapy. Comput Med Imaging Graph. 2010;34(1):55–60.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gao X, et al. Computer-assisted quantitative evaluation of therapeutic responses for lymphoma using serial PET/CT imaging. Acad Radiol. 2010;17(4):479–88.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Roskrow MA, et al. Epstein-Barr virus (EBV)-specific cytotoxic T lymphocytes for the treatment of patients with EBV-positive relapsed Hodgkin’s disease. Blood. 1998;91(8):2925–34.

    PubMed  CAS  Google Scholar 

  78. Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143–56.

    Article  PubMed  CAS  Google Scholar 

  79. Press WH, et al. Numerical recipes in C. Cambridge, UK: Cambridge Univ. Press; 1992.

    Google Scholar 

  80. Paragios N, et al. Gradient vector flow fast geometric active contours. IEEE Trans Pattern Anal Mach Intell. 2004;26(3):402–7.

    Article  PubMed  Google Scholar 

  81. Rueckert D, et al. Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration. IEEE Trans Med Imaging. 2003;22(8):1014–25.

    Article  PubMed  Google Scholar 

  82. Ceresoli G, et al. Positron emission tomography with F18-fluorodeoxyglucose (FDG-PET) in malignant pleural mesothelioma (MPM): prediction of response to chemotherapy by quantitative assessment of standard uptake value (SUV). Lung Cancer. 2005;49:S219-S.

    Article  Google Scholar 

  83. Keyes JW. Suv – standard uptake or silly useless value. J Nucl Med. 1995;36(10):1836–9.

    PubMed  Google Scholar 

  84. Luo J. Estimate standard uptake value (SUV) in F18FDG PET tumor imaging. Med Phys. 2006;33(6):2014–5.

    Article  Google Scholar 

  85. Mahan S, Ramsey C. Automatic generation of standard uptake value (SUV) isolines for treatment planning. Med Phys. 2003;30(6):1429.

    Google Scholar 

  86. Panizo CM, et al. The maximum standard uptake value (SUVmax) of PET/CT correlates with lymphoma aggressivity. Ann Oncol. 2008;19:250.

    Google Scholar 

  87. Suzuki O, et al. Standardization of PET standard uptake value for delineating GTV in integrated PET-CT of head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;72(1):S409–S.

    Article  Google Scholar 

  88. Thie JA. Understanding the standardized uptake value, its methods, and implications for usage. J Nucl Med. 2004;45(9):1431–4.

    PubMed  Google Scholar 

  89. Rosenberg SA. National-cancer-institute sponsored study of classifications of non-hodgkins lymphomas - summary and description of a working formulation for clinical usage. Cancer. 1982;49(10):2112–35.

    Article  Google Scholar 

  90. Vercauteren T, et al. Non-parametric diffeomorphic image registration with the demons algorithm. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv. 2007;10(Pt 2):319–26.

    Google Scholar 

  91. Xue Z, et al. Statistical representation of high-dimensional deformation fields with application to statistically constrained 3D warping. Med Image Anal. 2006;10(5):740–51.

    Article  PubMed  Google Scholar 

  92. Jenkinson M. FLIRT. v5.5 ed. University of Oxford. http://www.fmrib.ox.ac.uk/fsl/flirt/index.html. 2008.

Download references

Acknowledgements

The research is supported by NLM G08-LM008937, CPRIT RR100627, and JS Dunn Research Foundation. The authors would like to thank the contribution of Tiancheng He, Ph.D.; Po Su, M.E.; Ying Zhu, M.Sc.; Yong Zhang, Ph.D.; XinGao, Ph.D.; and Hai Li, Ph.D. in the development of AFINITI and LINA systems, as well as Geoffrey Young, M.D., of Brigham and Women’s Hospital in the consultation of AFINITI and Stephen Gottschalk and Catherine Bollard, M.D., of Texas Children Hospital in the consultation of LINA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen T. C. Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xue, Z., Wong, S.T.C. (2014). Medical Image Computing for Oncology: Review and Clinical Examples. In: Luna, A., Vilanova, J., Hygino da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40412-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40412-2_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40411-5

  • Online ISBN: 978-3-642-40412-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics