Skip to main content

Imaging of Tumor Metabolism: PET with Other Metabolites

  • Chapter
  • First Online:
Functional Imaging in Oncology

Abstract

As the research of metabolic imaging is expanding, the clinical applications of radiolabeled substrates have also been increasing. Apart from glycolysis, other biochemical processes including amino acid synthesis, peptide and nucleic acid sequencing, lipid metabolism, signal transduction, and neurotransmitter-receptor interactions are also known to represent various forms of metabolic changes possibly found in tumor cells. In the literature, there are increasing amount of research studies on non-18F-FDG PET radiopharmaceuticals targeted for specific biochemical processes other than glycolysis. This chapter discusses on the basic biochemistry of non-18F-FDG PET tracers and how a good understanding of the underlying metabolic pathways of individual tracers leads to various clinical applications, particularly in the improvement of tumor detection, diagnosis, and patient management. Specific discussion is focused on 11C-acetate, 18F-acetate, 11C-choline, 18F-choline, 11C-methionine, 18F-DOPA, 18F-FLT, and Gallium-68 (68Ga)-labeled somatostatin analogs, primarily because these PET tracers have been investigated in greater biochemical and pharmaceutical details. Some have already been clinically confirmed useful, while others have great potentials to add to our understanding and to guide our research development on tumor metabolism and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-DOPA:

F-18-fluoro-l-phenylalanine

18F-FAC:

18F-acetate

18F-FLT:

18F-fluorothymidine

acetyl-CoA:

Acetyl-coenzyme A

APUD:

Amine Precursor Uptake and Decarboxylation

EGF:

Endothelial growth factors

FAS:

Fatty acid synthetase

FNH:

Focal Nodular Hyperplasia

HCC:

Hepatocellular carcinoma

MGUS:

Monoclonal gammopathy of undetermined significance

NET:

Neuroendocrine tumors

NSCLC:

Non-small cell lung carcinoma

PSA:

Prostate-specific antigen

RCC:

Renal cell carcinoma

SREBPs:

Sterol regulatory element-binding proteins

SUV:

Standardized uptake value

TCA:

Tricarboxylic acid cycle

TK1:

Thymidine kinase 1

References

  1. Swinnen JV, et al. Stimulation of tumor-associated fatty acid synthase expression by growth factor activation of the sterol regulatory element-binding protein pathway. Oncogene. 2000;19:5173–81.

    PubMed  CAS  Google Scholar 

  2. Henes CG, et al. Assessment of myocardial oxidative metabolic reserve with positron emission tomography and carbon-11 acetate. J Nucl Med. 1989;30:1489–99.

    PubMed  CAS  Google Scholar 

  3. Sun KT, et al. Compartment model for measuring myocardial oxygen consumption using [1-11C]acetate. J Nucl Med. 1997;38:459–66.

    PubMed  CAS  Google Scholar 

  4. Sun KT, et al. Simultaneous measurement of myocardial oxygen consumption and blood flow using [1-carbon-11]acetate. J Nucl Med. 1998;39:272–80.

    PubMed  CAS  Google Scholar 

  5. Brown MA, et al. Validity of estimates of myocardial oxidative metabolism with carbon-11 acetate and positron emission tomography despite altered patterns of substrate utilization. J Nucl Med. 1989;30:187–93.

    PubMed  CAS  Google Scholar 

  6. Soloviev D, et al. PET imaging with 11C-acetate in prostate cancer: a biochemical, radiochemical and clinical perspective. Eur J Nucl Med Mol Imaging. 2008;35:942–9.

    PubMed  Google Scholar 

  7. Beynen AC, et al. The effects of lactate and acetate on fatty acid and cholesterol biosynthesis by isolated rat hepatocytes. Int J Biochem. 1982;14:165–9.

    PubMed  CAS  Google Scholar 

  8. Ferezou J, et al. Evidence for different isotopic enrichments of acetyl-CoA used for cholesterol synthesis in the liver and intestine: a study in the rat by mass fragmentography after intravenous infusion of [13C]acetate. Biochim Biophys Acta. 1986;875:227–35.

    PubMed  CAS  Google Scholar 

  9. Yoshimoto M, et al. Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol. 2001;28:117–22.

    PubMed  CAS  Google Scholar 

  10. Swinnen JV, et al. Fatty acid synthase drives the synthesis of phospholipids partitioning into detergent-resistant membrane microdomains. Biochem Biophys Res Commun. 2003;302:898–903.

    PubMed  CAS  Google Scholar 

  11. Swinnen JV, et al. Androgen regulation of the messenger RNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in the human prostatic adenocarcinoma cell line LNCaP. Mol Cell Endocrinol. 1994;104:153–62.

    PubMed  CAS  Google Scholar 

  12. Swinnen JV, et al. Androgen regulation of the messenger RNA encoding diazepam-binding inhibitor/acyl-CoA-binding protein in the rat. Mol Cell Endocrinol. 1996;118:65–70.

    PubMed  CAS  Google Scholar 

  13. Shreve P, et al. Carbon-11-acetate PET imaging in renal disease. J Nucl Med. 1995;36:1595–601.

    PubMed  CAS  Google Scholar 

  14. Oyama N, et al. 11C-acetate PET imaging of prostate cancer. J Nucl Med. 2002;43:181–6.

    PubMed  CAS  Google Scholar 

  15. Dimitrakopoulou-Strauss A, Strauss LG. PET imaging of prostate cancer with 11C-acetate. J Nucl Med. 2003;44:556–8.

    PubMed  Google Scholar 

  16. Oyama N, et al. 11C-acetate PET imaging of prostate cancer: detection of recurrent disease at PSA relapse. J Nucl Med. 2003;44:549–55.

    PubMed  CAS  Google Scholar 

  17. Swinnen JV, Verhoeven G. Androgens and the control of lipid metabolism in human prostate cancer cells. J Steroid Biochem Mol Biol. 1998;65:191–8.

    PubMed  CAS  Google Scholar 

  18. Swinnen JV, et al. Androgens stimulate fatty acid synthase in the human prostate cancer cell line LNCaP. Cancer Res. 1997;57:1086–90.

    PubMed  CAS  Google Scholar 

  19. Swinnen JV. Increased lipogenesis in steroid-responsive cancer cells: mechanisms of regulation, role in cancer cell biology and perspectives on clinical applications. Verh K Acad Geneeskd Belg. 2001;63:321–33.

    PubMed  CAS  Google Scholar 

  20. Kotzerke J, et al. Carbon-11 acetate positron emission tomography can detect local recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1380–4.

    PubMed  CAS  Google Scholar 

  21. Albrecht S, et al. (11)C-acetate PET in the early evaluation of prostate cancer recurrence. Eur J Nucl Med Mol Imaging. 2007;34:185–96.

    PubMed  Google Scholar 

  22. Kotzerke J, et al. Intraindividual comparison of [11C]acetate and [11C]choline PET for detection of metastases of prostate cancer. Nuklearmedizin. 2003;42:25–30.

    PubMed  CAS  Google Scholar 

  23. Reske SN, et al. PET and PET/CT in relapsing prostate carcinoma. Urologe A. 2006;45:1240, 1242–1244, 1246–1248, 1250.

    PubMed  CAS  Google Scholar 

  24. Fricke E, et al. Positron emission tomography with 11C-acetate and 18F-FDG in prostate cancer patients. Eur J Nucl Med Mol Imaging. 2003;30:607–11.

    PubMed  CAS  Google Scholar 

  25. Ho CL, et al. Dual-tracer PET/CT in renal angiomyolipoma and subtypes of renal cell carcinoma. Clin Nucl Med. 2012;37:1075–82.

    PubMed  Google Scholar 

  26. Schoder H, et al. Initial results with (11)C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol. 2012;14:245–51.

    PubMed  Google Scholar 

  27. Kotzerke J, et al. [1-(11)C]acetate uptake is not increased in renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2007;34:884–8.

    PubMed  CAS  Google Scholar 

  28. Oyama N, et al. 11C-Acetate PET imaging for renal cell carcinoma. Eur J Nucl Med Mol Imaging. 2009;36:422–7.

    PubMed  Google Scholar 

  29. Ho CL, et al. 11C-acetate PET/CT in multicentric angiomyolipoma of the kidney. Clin Nucl Med. 2011;36:407–8.

    PubMed  Google Scholar 

  30. Okazumi S, et al. Evaluation of liver tumors using fluorine-18-fluorodeoxyglucose PET: characterization of tumor and assessment of effect of treatment. J Nucl Med. 1992;33:333–9.

    PubMed  CAS  Google Scholar 

  31. Khan MA, et al. Positron emission tomography scanning in the evaluation of hepatocellular carcinoma. J Hepatol. 2000;32:792–7.

    PubMed  CAS  Google Scholar 

  32. Schroder O, et al. Limited value of fluorine-18-fluorodeoxyglucose PET for the differential diagnosis of focal liver lesions in patients with chronic hepatitis C virus infection. Nuklearmedizin. 1998;37:279–85.

    PubMed  CAS  Google Scholar 

  33. Delbeke D, et al. Evaluation of benign vs malignant hepatic lesions with positron emission tomography. Arch Surg. 1998;133:510–5; discussion 515–6.

    PubMed  CAS  Google Scholar 

  34. Trojan J, et al. Fluorine-18 FDG positron emission tomography for imaging of hepatocellular carcinoma. Am J Gastroenterol. 1999;94:3314–9.

    PubMed  CAS  Google Scholar 

  35. Ho CL, et al. 11C-acetate PET imaging in hepatocellular carcinoma and other liver masses. J Nucl Med. 2003;44:213–21.

    PubMed  Google Scholar 

  36. Chen S, Feng D. Noninvasive quantification of the differential portal and arterial contribution to the liver blood supply from PET measurements using the 11C-acetate kinetic model. IEEE Trans Biomed Eng. 2004;51:1579–85.

    PubMed  Google Scholar 

  37. Chen S, et al. Tracer kinetic modeling of 11C-acetate applied in the liver with positron emission tomography. IEEE Trans Med Imaging. 2004;23:426–32.

    PubMed  Google Scholar 

  38. Chen S, et al. Functional imaging techniques for the evaluation of hepatocellular carcinoma using dynamic 11C-acetate PET imaging. Curr Med Imaging Rev. 2006;2:205–14.

    CAS  Google Scholar 

  39. Chen S, Feng D. Evaluation of hepatocellular carcinoma with dynamic 11C-acetate PET: a dual-modeling method. IEEE Trans Nucl Sci. 2008;55:999–1007.

    CAS  Google Scholar 

  40. Chen S, Feng D. Novel parameter estimation methods for 11C-acetate dual-input liver model with dynamic PET. IEEE Trans Biomed Eng. 2006;53:967–73.

    PubMed  Google Scholar 

  41. Ho CL, et al. 11C acetate and 18F FDG PET-CT imaging in hepatocellular carcinoma less than 2 cm. J Nucl Med. 2005;46:46.

    Google Scholar 

  42. Ho CL, et al. 11C-acetate and 18F-FDG PET/CT characteristics for a cohort of asymptomatic patients with non-specific CT/MR findings subsequently diagnosed of intrahepatic cholangiocarinoma. J Nucl Med. 2011;52:95P.

    Google Scholar 

  43. Ho CL, et al. Education and imaging. Hepatobiliary and pancreatic: imaging for hepatic angiomyolipoma. J Gastroenterol Hepatol. 2010;25:1589.

    PubMed  Google Scholar 

  44. Ho CL, et al. Dual-tracer PET/CT imaging in evaluation of metastatic hepatocellular carcinoma. J Nucl Med. 2007;48:902–9.

    PubMed  CAS  Google Scholar 

  45. Katyal S, et al. Extrahepatic metastases of hepatocellular carcinoma. Radiology. 2000;216:698–703.

    PubMed  CAS  Google Scholar 

  46. Kawaoka T, et al. FDG positron emission tomography/computed tomography for the detection of extrahepatic metastases from hepatocellular carcinoma. Hepatol Res. 2009;39:134–42.

    PubMed  Google Scholar 

  47. Ho CL, et al. PET/CT characteristics of isolated bone metastases in hepatocellular carcinoma. Radiology. 2011;258:515–23.

    PubMed  Google Scholar 

  48. Li S, et al. Comparison of (11)C-acetate positron emission tomography and (67)Gallium citrate scintigraphy in patients with hepatocellular carcinoma. Liver Int. 2006;26:920–7.

    PubMed  CAS  Google Scholar 

  49. Park JW, et al. A prospective evaluation of 18F-FDG and 11C-acetate PET/CT for detection of primary and metastatic hepatocellular carcinoma. J Nucl Med. 2008;49:1912–21.

    PubMed  Google Scholar 

  50. Salem N, et al. PET imaging of hepatocellular carcinoma with 2-deoxy-2[18F]fluoro-D-glucose, 6-deoxy-6[18F] fluoro-D-glucose, [1-11C]-acetate and [N-methyl-11C]-choline. Q J Nucl Med Mol Imaging. 2009;53:144–56.

    PubMed  CAS  Google Scholar 

  51. Kuang Y, et al. A colorimetric assay method to measure acetyl-CoA synthetase activity: application to woodchuck model of hepatitis virus-induced hepatocellular carcinoma. J Biochem Biophys Methods. 2007;70:649–55.

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Yun M, et al. The importance of acetyl coenzyme A synthetase for 11C-acetate uptake and cell survival in hepatocellular carcinoma. J Nucl Med. 2009;50:1222–8.

    PubMed  CAS  Google Scholar 

  53. Tsuchida T, et al. Grading of brain glioma with 1-11C-acetate PET: comparison with 18F-FDG PET. Nucl Med Biol. 2008;35:171–6.

    PubMed  CAS  Google Scholar 

  54. Yamamoto Y, et al. 11C-acetate PET in the evaluation of brain glioma: comparison with 11C-methionine and 18F-FDG-PET. Mol Imaging Biol. 2008;10:281–7.

    PubMed  CAS  Google Scholar 

  55. Liu RS, et al. PET imaging of brain astrocytoma with 1-11C-acetate. Eur J Nucl Med Mol Imaging. 2006;33:420–7.

    PubMed  Google Scholar 

  56. Liu RS, et al. 1-11C-acetate versus 18F-FDG PET in detection of meningioma and monitoring the effect of gamma-knife radiosurgery. J Nucl Med. 2010;51:883–91.

    PubMed  Google Scholar 

  57. Higashi K, et al. 11C-acetate PET imaging of lung cancer: comparison with 18F-FDG PET and 99mTc-MIBI SPET. Eur J Nucl Med Mol Imaging. 2004;31:13–21.

    PubMed  Google Scholar 

  58. Nomori H, et al. 11C-acetate can be used in place of 18F-fluorodeoxyglucose for positron emission tomography imaging of non-small cell lung cancer with higher sensitivity for well-differentiated adenocarcinoma. J Thorac Oncol. 2008;3:1427–32.

    PubMed  Google Scholar 

  59. Boccadoro M, Pileri A. Diagnosis, prognosis, and standard treatment of multiple myeloma. Hematol Oncol Clin North Am. 1997;11:111–31.

    PubMed  CAS  Google Scholar 

  60. Castellani M, et al. The prognostic value of F-18 fluorodeoxyglucose bone marrow uptake in patients with recent diagnosis of multiple myeloma: a comparative study with Tc-99m sestamibi. Clin Nucl Med. 2010;35:1–5.

    PubMed  Google Scholar 

  61. Mahfouz T, et al. 18F-fluorodeoxyglucose positron emission tomography contributes to the diagnosis and management of infections in patients with multiple myeloma: a study of 165 infectious episodes. J Clin Oncol. 2005;23:7857–63.

    PubMed  CAS  Google Scholar 

  62. Hillner BE, et al. Relationship between cancer type and impact of PET and PET/CT on intended management: findings of the national oncologic PET registry. J Nucl Med. 2008;49:1928–35.

    PubMed  Google Scholar 

  63. Shortt CP, et al. Whole-body MRI versus PET in assessment of multiple myeloma disease activity. AJR Am J Roentgenol. 2009;192:980–6.

    PubMed  Google Scholar 

  64. Ho CL, et al. Preliminary assessment of 11C-acetate and 18F-FDG PET/CT for the diagnosis and management of multiple myeloma. J Nucl Med. 2011;52:110P.

    Google Scholar 

  65. Ho CL, et al. Added value of 11C-acetate PET/CT to 18F-FDG for the management of myeloma. J Nucl Med. 2012;53:155P.

    Google Scholar 

  66. Lee SM, et al. Incidental finding of an 11C-acetate PET-positive multiple myeloma. Ann Nucl Med. 2010;24:41–4.

    PubMed  Google Scholar 

  67. Jeong JM, et al. Synthesis of no-carrier-added [18F]fluoroacetate. J Labelled Comp Radiopharm. 1997;34:395–9.

    Google Scholar 

  68. Sun LQ, et al. New approach to fully automated synthesis of sodium [18F]fluoroacetate – a simple and fast method using a commercial synthesizer. Nucl Med Biol. 2006;33:153–8.

    PubMed  CAS  Google Scholar 

  69. Ponde DE, et al. 18F-fluoroacetate: a potential acetate analog for prostate tumor imaging–in vivo evaluation of 18F-fluoroacetate versus 11C-acetate. J Nucl Med. 2007;48:420–8.

    PubMed  CAS  Google Scholar 

  70. Richter S, et al. [18F]fluoroacetate and radiopharmacological characterization in rats and tumor-xenografted mice. Curr Radiopharm. 2008;1:103–9.

    CAS  Google Scholar 

  71. Ho CL, et al. [18F]fluoroacetate positron emission tomography for hepatocellular carcinoma and metastases: an alternative tracer for [11C]acetate? Mol Imaging. 2012;11:229–39.

    PubMed  CAS  Google Scholar 

  72. Nishii R, et al. Pharmacokinetics, metabolism, biodistribution, radiation dosimetry, and toxicology of (18)F-fluoroacetate ((18)F-FACE) in non-human primates. Mol Imaging Biol. 2012;14(2):213–24.

    PubMed  Google Scholar 

  73. Lindhe O, et al. [(18)F]fluoroacetate is not a functional analogue of [(11)C]acetate in normal physiology. Eur J Nucl Med Mol Imaging. 2009;36:1453–9.

    PubMed  CAS  Google Scholar 

  74. Peters R. Some metabolic aspects of fluoroacetate especially related to fluorocitrate. Ciba Found Symp. 1971;2:55–76.

    PubMed  CAS  Google Scholar 

  75. Matthies A, et al. Imaging of prostate cancer metastases with 18F-fluoroacetate using PET/CT. Eur J Nucl Med Mol Imaging. 2004;31:797.

    PubMed  Google Scholar 

  76. Goncharov NV, et al. Toxicology of fluoroacetate: a review, with possible directions for therapy research. J Appl Toxicol. 2006;26:148–61.

    PubMed  CAS  Google Scholar 

  77. Canty DJ, Zeisel SH. Lecithin and choline in human health and disease. Nutr Rev. 1994;52:327–39.

    PubMed  CAS  Google Scholar 

  78. Haubrich DR, et al. Distribution and metabolism of intravenously administered choline[methyl- 3-H] and synthesis in vivo of acetylcholine in various tissues of guinea pigs. J Pharmacol Exp Ther. 1975;193:246–55.

    PubMed  CAS  Google Scholar 

  79. George TP, et al. Phosphatidylcholine biosynthesis in cultured glioma cells: evidence for channeling of intermediates. Biochim Biophys Acta. 1989;1004:283–91.

    PubMed  CAS  Google Scholar 

  80. Yavin E. Regulation of phospholipid metabolism in differentiating cells from rat brain cerebral hemispheres in culture. Patterns of acetylcholine phosphocholine, and choline phosphoglycerides labeling from (methyl-14C)choline. J Biol Chem. 1976;251:1392–7.

    PubMed  CAS  Google Scholar 

  81. Hara T, et al. PET imaging of brain tumor with [methyl-11C]choline. J Nucl Med. 1997;38:842–7.

    PubMed  CAS  Google Scholar 

  82. Liscovitch M, et al. Differential regulation of phosphatidylcholine biosynthesis by 12-O-tetradec-anoylphorbol-13-acetate and diacylglycerol in NG108-15 neuroblastoma x glioma hybrid cells. J Biol Chem. 1987;262:17487–91.

    Google Scholar 

  83. Alger JR, et al. Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology. 1990;177:633–41.

    PubMed  CAS  Google Scholar 

  84. Fulham MJ, et al. Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology. 1992;185:675–86.

    PubMed  CAS  Google Scholar 

  85. Hara T, et al. Uptake rates of 18F-fluorodeoxyglucose and 11C-choline in lung cancer and pulmonary tuberculosis: a positron emission tomography study. Chest. 2003;124:893–901.

    PubMed  CAS  Google Scholar 

  86. Breeuwsma AJ, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging. 2005;32:668–73.

    PubMed  Google Scholar 

  87. Farsad M, et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005;46:1642–9.

    PubMed  CAS  Google Scholar 

  88. Reske SN, et al. Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med. 2006;47:1249–54.

    PubMed  CAS  Google Scholar 

  89. Richter JA, et al. Dual tracer 11C-choline and FDG-PET in the diagnosis of biochemical prostate cancer relapse after radical treatment. Mol Imaging Biol. 2010;12:210–7.

    PubMed  Google Scholar 

  90. Picchio M, et al. [11C]Choline PET/CT detection of bone metastases in patients with PSA progression after primary treatment for prostate cancer: comparison with bone scintigraphy. Eur J Nucl Med Mol Imaging. 2012;39:13–26.

    PubMed  CAS  Google Scholar 

  91. Kotzerke J, et al. Experience with carbon-11 choline positron emission tomography in prostate carcinoma. Eur J Nucl Med. 2000;27:1415–9.

    PubMed  CAS  Google Scholar 

  92. de Jong IJ, et al. Preoperative staging of pelvic lymph nodes in prostate cancer by 11C-choline PET. J Nucl Med. 2003;44:331–5.

    PubMed  Google Scholar 

  93. Grall J, Corbel L. PSA and benign prostatic hyperplasia. Ann Urol (Paris). 2004;38 Suppl 2:S43–5.

    Google Scholar 

  94. Scattoni V, et al. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol. 2007;52:423–9.

    PubMed  Google Scholar 

  95. Rinnab L, et al. Evaluation of [11C]-choline positron-emission/computed tomography in patients with increasing prostate-specific antigen levels after primary treatment for prostate cancer. BJU Int. 2007;100:786–93.

    PubMed  CAS  Google Scholar 

  96. Reske SN, et al. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2008;35:9–17.

    PubMed  Google Scholar 

  97. de Jong IJ, et al. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol. 2003;44:32–8; discussion 38–9.

    PubMed  Google Scholar 

  98. Graute V, et al. Relationship between PSA kinetics and [18F]fluorocholine PET/CT detection rates of recurrence in patients with prostate cancer after total prostatectomy. Eur J Nucl Med Mol Imaging. 2012;39:271–82.

    PubMed  CAS  Google Scholar 

  99. Hara T, et al. Development of (18)F-fluoroethylcholine for cancer imaging with PET: synthesis, biochemistry, and prostate cancer imaging. J Nucl Med. 2002;43:187–99.

    PubMed  CAS  Google Scholar 

  100. Beheshti M, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74.

    PubMed  Google Scholar 

  101. Beheshti M, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33.

    PubMed  Google Scholar 

  102. DeGrado TR, et al. Pharmacokinetics and radiation dosimetry of 18F-fluorocholine. J Nucl Med. 2002;43:92–6.

    PubMed  CAS  Google Scholar 

  103. Roivainen A, et al. Blood metabolism of [methyl-11C]choline; implications for in vivo imaging with positron emission tomography. Eur J Nucl Med. 2000;27:25–32.

    PubMed  CAS  Google Scholar 

  104. Beheshti M, et al. The use of F-18 choline PET in the assessment of bone metastases in prostate cancer: correlation with morphological changes on CT. Mol Imaging Biol. 2009;11:446–54.

    PubMed  Google Scholar 

  105. Kwee SA, et al. Localization of primary prostate cancer with dual-phase 18F-fluorocholine PET. J Nucl Med. 2006;47:262–9.

    PubMed  Google Scholar 

  106. Pelosi E, et al. Role of whole-body 18F-choline PET/CT in disease detection in patients with biochemical relapse after radical treatment for prostate cancer. Radiol Med. 2008;113:895–904.

    PubMed  CAS  Google Scholar 

  107. Bauman G, et al. 18F-fluorocholine for prostate cancer imaging: a systematic review of the literature. Prostate Cancer Prostatic Dis. 2012;15:45–55.

    PubMed  CAS  Google Scholar 

  108. Soyka JD, et al. Clinical impact of 18F-choline PET/CT in patients with recurrent prostate cancer. Eur J Nucl Med Mol Imaging. 2012;39:936–43.

    PubMed  CAS  Google Scholar 

  109. Talbot JN, et al. Detection of hepatocellular carcinoma with PET/CT: a prospective comparison of 18F-fluorocholine and 18F-FDG in patients with cirrhosis or chronic liver disease. J Nucl Med. 2010;51:1699–706.

    PubMed  Google Scholar 

  110. Talbot JN, et al. PET/CT in patients with hepatocellular carcinoma using [(18)F]fluorocholine: preliminary comparison with [(18)F]FDG PET/CT. Eur J Nucl Med Mol Imaging. 2006;33:1285–9.

    PubMed  Google Scholar 

  111. Bading JR, et al. System A amino acid transport in cultured human tumor cells: implications for tumor imaging with PET. Nucl Med Biol. 1996;23:779–86.

    PubMed  CAS  Google Scholar 

  112. Bergstrom M, et al. Comparison of the accumulation kinetics of L-(methyl-11C)-methionine and D-(methyl-11C)-methionine in brain tumors studied with positron emission tomography. Acta Radiol. 1987;28:225–9.

    PubMed  CAS  Google Scholar 

  113. Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990;70:43–77.

    PubMed  CAS  Google Scholar 

  114. Knudsen GM, et al. Asymmetrical transport of amino acids across the blood–brain barrier in humans. J Cereb Blood Flow Metab. 1990;10:698–706.

    PubMed  CAS  Google Scholar 

  115. Sanchezdel Pino MM, et al. Neutral amino acid transport characterization of isolated luminal and abluminal membranes of the blood-brain barrier. J Biol Chem. 1995;270:14913–8.

    CAS  Google Scholar 

  116. Schober O, et al. Non selective transport of [11C-methyl]-L-and D-methionine into a malignant glioma. Eur J Nucl Med. 1987;13:103–5.

    PubMed  CAS  Google Scholar 

  117. Derlon JM, et al. [11C]L-methionine uptake in gliomas. Neurosurgery. 1989;25:720–8.

    PubMed  CAS  Google Scholar 

  118. Ogawa T, et al. Clinical value of PET with 18F-fluorodeoxyglucose and L-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol. 1991;32:197–202.

    PubMed  CAS  Google Scholar 

  119. Ogawa T, et al. Carbon-11-methionine PET evaluation of intracerebral hematoma: distinguishing neoplastic from non-neoplastic hematoma. J Nucl Med. 1995;36:2175–9.

    PubMed  CAS  Google Scholar 

  120. Chung JK, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging. 2002;29:176–82.

    PubMed  CAS  Google Scholar 

  121. Ogawa T, et al. Cerebral glioma: evaluation with methionine PET. Radiology. 1993;186:45–53.

    PubMed  CAS  Google Scholar 

  122. Mosskin M, et al. Positron emission tomography with 11C-methionine of intracranial tumours compared with histology of multiple biopsies. Acta Radiol Suppl. 1986;369:157–60.

    PubMed  CAS  Google Scholar 

  123. Kubota K, et al. Differential diagnosis of AH109A tumor and inflammation by radioscintigraphy with L-[methyl-11C]methionine. Jpn J Cancer Res. 1989;80:778–82.

    PubMed  CAS  Google Scholar 

  124. Nyberg G, et al. PET-methionine of skull base neuromas and meningiomas. Acta Otolaryngol. 1997;117:482–9.

    PubMed  CAS  Google Scholar 

  125. Herholz K, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology. 1998;50:1316–22.

    PubMed  CAS  Google Scholar 

  126. Otto D, et al. Pre-operative localisation of hyperfunctional parathyroid tissue with 11C-methionine PET. Eur J Nucl Med Mol Imaging. 2004;31:1405–12.

    PubMed  CAS  Google Scholar 

  127. Beggs AD, Hain SF. Use of co-registered 11C-methionine PET and computed tomography for the localisation of parathyroid adenomas. Eur J Nucl Med Mol Imaging. 2003;30:1602.

    PubMed  Google Scholar 

  128. Beggs AD, Hain SF. Localization of parathyroid adenomas using 11C-methionine positron emission tomography. Nucl Med Commun. 2005;26:133–6.

    PubMed  Google Scholar 

  129. Tang BN, et al. Accurate pre-operative localization of pathological parathyroid glands using 11C-methionine PET/CT. Contrast Media Mol Imaging. 2008;3:157–63.

    PubMed  CAS  Google Scholar 

  130. Caldarella C, et al. Diagnostic performance of positron emission tomography using (11)C-methionine in patients with suspected parathyroid adenoma: a meta-analysis. Endocrine. 2013;43(1):78–83.

    PubMed  CAS  Google Scholar 

  131. Cook GJ, et al. [11C]Methionine positron emission tomography for patients with persistent or recurrent hyperparathyroidism after surgery. Eur J Endocrinol. 1998;139:195–7.

    PubMed  CAS  Google Scholar 

  132. Leskinen-Kallio S, et al. Imaging of head and neck tumors with positron emission tomography and [11C]methionine. Int J Radiat Oncol Biol Phys. 1994;30:1195–9.

    PubMed  CAS  Google Scholar 

  133. Leskinen-Kallio S, et al. Uptake of 11C-methionine in breast cancer studied by PET. An association with the size of S-phase fraction. Br J Cancer. 1991;64:1121–4.

    PubMed  CAS  PubMed Central  Google Scholar 

  134. Schiepers C, et al. 18F-FDOPA kinetics in brain tumors. J Nucl Med. 2007;48:1651–61.

    PubMed  Google Scholar 

  135. Becherer A, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging. 2003;30:1561–7.

    PubMed  CAS  Google Scholar 

  136. Minn H, et al. 18F-FDOPA: a multiple-target molecule. J Nucl Med. 2009;50:1915–8.

    PubMed  CAS  Google Scholar 

  137. Fiebrich HB, et al. Total 18F-dopa PET tumour uptake reflects metabolic endocrine tumour activity in patients with a carcinoid tumour. Eur J Nucl Med Mol Imaging. 2011;38:1854–61.

    PubMed  CAS  PubMed Central  Google Scholar 

  138. Koopmans KP, et al. Molecular imaging in neuroendocrine tumors: molecular uptake mechanisms and clinical results. Crit Rev Oncol Hematol. 2009;71:199–213.

    PubMed  Google Scholar 

  139. Neels OC, et al. Manipulation of [11C]-5-hydroxytryptophan and 6-[18F]fluoro-3,4-dihydroxy-L-phenylalanine accumulation in neuroendocrine tumor cells. Cancer Res. 2008;68:7183–90.

    PubMed  CAS  Google Scholar 

  140. Eisenhofer G, et al. Understanding catecholamine metabolism as a guide to the biochemical diagnosis of pheochromocytoma. Rev Endocr Metab Disord. 2001;2:297–311.

    PubMed  CAS  Google Scholar 

  141. Plathow C, Weber WA. Tumor cell metabolism imaging. J Nucl Med. 2008;49 Suppl 2:43S–63.

    PubMed  CAS  Google Scholar 

  142. Tripathi M, et al. Comparative evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for metabolic imaging of low grade gliomas. Clin Nucl Med. 2009;34:878–83.

    PubMed  Google Scholar 

  143. Adams S, et al. Metabolic (PET) and receptor (SPET) imaging of well- and less well-differentiated tumours: comparison with the expression of the Ki-67 antigen. Nucl Med Commun. 1998;19:641–7.

    PubMed  CAS  Google Scholar 

  144. Belhocine T, et al. Fluorodeoxyglucose positron emission tomography and somatostatin receptor scintigraphy for diagnosing and staging carcinoid tumours: correlations with the pathological indexes p53 and Ki-67. Nucl Med Commun. 2002;23:727–34.

    PubMed  CAS  Google Scholar 

  145. Becherer A, et al. Imaging of advanced neuroendocrine tumors with (18)F-FDOPA PET. J Nucl Med. 2004;45:1161–7.

    PubMed  CAS  Google Scholar 

  146. Hoegerle S, et al. Whole-body 18F dopa PET for detection of gastrointestinal carcinoid tumors. Radiology. 2001;220:373–80.

    PubMed  CAS  Google Scholar 

  147. Cheng T, et al. Dual-tracer (18F-FDG and 18F-DOPA) PET/CT in evaluation of neuroendocrine tumors: an Asian study. J Nucl Med. 2011;52:167P.

    Google Scholar 

  148. Koopmans KP, et al. Improved staging of patients with carcinoid and islet cell tumors with 18F-dihydroxy-phenyl-alanine and 11C-5-hydroxy-tryptophan positron emission tomography. J Clin Oncol. 2008;26:1489–95.

    PubMed  Google Scholar 

  149. Koopmans KP, et al. Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol. 2006;7:728–34.

    PubMed  CAS  Google Scholar 

  150. Yakemchuk VN, et al. PET/CT using (1)(8)F-FDOPA provides improved staging of carcinoid tumor patients in a Canadian setting. Nucl Med Commun. 2012;33:322–30.

    PubMed  CAS  Google Scholar 

  151. Martiat P, et al. In vivo measurement of carbon-11 thymidine uptake in non-Hodgkin’s lymphoma using positron emission tomography. J Nucl Med. 1988;29:1633–7.

    Google Scholar 

  152. Mankoff DA, et al. Kinetic analysis of 2-[11C]thymidine PET imaging studies: validation studies. J Nucl Med. 1999;40:614–24.

    PubMed  CAS  Google Scholar 

  153. Belt JA, et al. Nucleoside transport in normal and neoplastic cells. Adv Enzyme Regul. 1993;33:235–52.

    PubMed  CAS  Google Scholar 

  154. Mackey JR, et al. Functional nucleoside transporters are required for gemcitabine influx and manifestation of toxicity in cancer cell lines. Cancer Res. 1998;58:4349–57.

    PubMed  CAS  Google Scholar 

  155. Arner ES, et al. Selective assays for thymidine kinase 1 and 2 and deoxycytidine kinase and their activities in extracts from human cells and tissues. Biochem Biophys Res Commun. 1992;188:712–8.

    PubMed  CAS  Google Scholar 

  156. Langen P, et al. 3′-Deoxy-3′-fluorothymidine, a new selective inhibitor of DNA-synthesis. Acta Biol Med Ger. 1969;23:759–66.

    PubMed  CAS  Google Scholar 

  157. Matthes E, et al. Phosphorylation, anti-HIV activity and cytotoxicity of 3′-fluorothymidine. Biochem Biophys Res Commun. 1988;153:825–31.

    PubMed  CAS  Google Scholar 

  158. Munch-Petersen B, et al. Diverging substrate specificity of pure human thymidine kinases 1 and 2 against antiviral dideoxynucleosides. J Biol Chem. 1991;266:9032–8.

    PubMed  CAS  Google Scholar 

  159. Sherley JL, Kelly TJ. Regulation of human thymidine kinase during the cell cycle. J Biol Chem. 1988;263:8350–8.

    PubMed  CAS  Google Scholar 

  160. Kong XB, et al. Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother. 1992;36:808–18.

    PubMed  CAS  PubMed Central  Google Scholar 

  161. Mier W, et al. [18F]FLT; portrait of a proliferation marker. Eur J Nucl Med Mol Imaging. 2002;29:165–9.

    PubMed  CAS  Google Scholar 

  162. Sakamoto S, et al. Relative activities of thymidylate synthetase and thymidine kinase in human mammary tumours. Anticancer Res. 1993;13:205–7.

    PubMed  CAS  Google Scholar 

  163. Romain S, et al. DNA-synthesis enzyme activity: a biological tool useful for predicting anti-metabolic drug sensitivity in breast cancer? Int J Cancer. 1997;74:156–61.

    PubMed  CAS  Google Scholar 

  164. Boothman DA, et al. Enhanced expression of thymidine kinase in human cells following ionizing radiation. Int J Radiat Oncol Biol Phys. 1994;30:391–8.

    PubMed  CAS  Google Scholar 

  165. Been LB, et al. [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging. 2004;31:1659–72.

    PubMed  Google Scholar 

  166. Gati WP, et al. Structural modifications at the 2′- and 3′-positions of some pyrimidine nucleosides as determinants of their interaction with the mouse erythrocyte nucleoside transporter. Biochem Pharmacol. 1984;33:3325–31.

    PubMed  CAS  Google Scholar 

  167. Eriksson S, et al. Comparison of the substrate specificities of human thymidine kinase 1 and 2 and deoxycytidine kinase toward antiviral and cytostatic nucleoside analogs. Biochem Biophys Res Commun. 1991;176:586–92.

    PubMed  CAS  Google Scholar 

  168. Seitz U, et al. Evaluation of pyrimidine metabolising enzymes and in vitro uptake of 3′-[(18)F]fluoro-3′-deoxythymidine ([(18)F]FLT) in pancreatic cancer cell lines. Eur J Nucl Med Mol Imaging. 2002;29:1174–81.

    PubMed  CAS  Google Scholar 

  169. van Waarde A, et al. Selectivity of 18F-FLT and 18F-FDG for differentiating tumor from inflammation in a rodent model. J Nucl Med. 2004;45:695–700.

    PubMed  Google Scholar 

  170. Rasey JS, et al. Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med. 2002;43:1210–7.

    PubMed  CAS  Google Scholar 

  171. van Westreenen HL, et al. Comparison of 18F-FLT PET and 18F-FDG PET in esophageal cancer. J Nucl Med. 2005;46:400–4.

    PubMed  Google Scholar 

  172. Wagner M, et al. 3′-[18F]fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-Cell lymphoma model and in the human disease. Cancer Res. 2003;63:2681–7.

    PubMed  CAS  Google Scholar 

  173. Hatakeyama T, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging. 2008;35:2009–17.

    PubMed  CAS  Google Scholar 

  174. Chen W, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med. 2005;46:945–52.

    PubMed  CAS  Google Scholar 

  175. Vesselle H, et al. In vivo validation of 3′deoxy-3′-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res. 2002;8:3315–23.

    PubMed  CAS  Google Scholar 

  176. Smyczek-Gargya B, et al. PET with [18F]fluorothymidine for imaging of primary breast cancer: a pilot study. Eur J Nucl Med Mol Imaging. 2004;31:720–4.

    PubMed  Google Scholar 

  177. Buck AK, et al. Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med. 2003;44:1426–31.

    PubMed  CAS  Google Scholar 

  178. Eckel F, et al. Imaging of proliferation in hepatocellular carcinoma with the in vivo marker 18F-fluorothymidine. J Nucl Med. 2009;50:1441–7.

    PubMed  CAS  Google Scholar 

  179. Kishino T, et al. Usefulness of 3′-deoxy-3′-18F-fluorothymidine PET for predicting early response to chemoradiotherapy in head and neck cancer. J Nucl Med. 2012;53:1521–7.

    PubMed  CAS  Google Scholar 

  180. Reisine T, Bell GI. Molecular biology of somatostatin receptors. Endocr Rev. 1995;16:427–42.

    PubMed  CAS  Google Scholar 

  181. Kwekkeboom DJ, et al. Peptide receptor radionuclide therapy in patients with gastroenteropancreatic neuroendocrine tumors. Semin Nucl Med. 2010;40:78–88.

    PubMed  Google Scholar 

  182. Reubi JC, et al. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28:836–46.

    PubMed  CAS  Google Scholar 

  183. Wild D, et al. DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals. Eur J Nucl Med Mol Imaging. 2003;30:1338–47.

    PubMed  CAS  Google Scholar 

  184. Win Z, et al. The possible role of 68Ga-DOTATATE PET in malignant abdominal paraganglioma. Eur J Nucl Med Mol Imaging. 2006;33:506.

    PubMed  Google Scholar 

  185. Reubi JC, et al. Affinity profiles for human somatostatin receptor subtypes SST1-SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use. Eur J Nucl Med. 2000;27:273–82.

    PubMed  CAS  Google Scholar 

  186. Al-Nahhas A, et al. What can gallium-68 PET add to receptor and molecular imaging? Eur J Nucl Med Mol Imaging. 2007;34:1897–901.

    PubMed  Google Scholar 

  187. Cescato R, et al. Internalization of sst2, sst3, and sst5 receptors: effects of somatostatin agonists and antagonists. J Nucl Med. 2006;47:502–11.

    PubMed  CAS  Google Scholar 

  188. Hofman MS, et al. High management impact of Ga-68 DOTATATE (GaTate) PET/CT for imaging neuroendocrine and other somatostatin expressing tumours. J Med Imaging Radiat Oncol. 2012;56:40–7.

    PubMed  Google Scholar 

  189. Oh S, et al. Effect of peptide receptor radionuclide therapy on somatostatin receptor status and glucose metabolism in neuroendocrine tumors: intraindividual comparison of Ga-68 DOTANOC PET/CT and F-18 FDG PET/CT. Int J Mol Imaging. 2011;2011:524130.

    PubMed  PubMed Central  Google Scholar 

  190. Prasad V, Baum RP. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging. 2010;54:61–7.

    PubMed  CAS  Google Scholar 

  191. Gabriel M, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48:508–18.

    PubMed  CAS  Google Scholar 

  192. Buchmann I, et al. Comparison of 68Ga-DOTATOC PET and 111In-DTPAOC (Octreoscan) SPECT in patients with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2007;34:1617–26.

    PubMed  CAS  Google Scholar 

  193. Froeling V, et al. Impact of Ga-68 DOTATOC PET/CT on the diagnosis and treatment of patients with multiple endocrine neoplasia. Ann Nucl Med. 2012;26(9):738–43.

    PubMed  CAS  Google Scholar 

  194. Kayani I, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (DOTA-DPhe1, Tyr3-octreotate) and 18F-FDG. Cancer. 2008;112:2447–55.

    PubMed  Google Scholar 

  195. Nyuyki F, et al. Potential impact of (68)Ga-DOTATOC PET/CT on stereotactic radiotherapy planning of meningiomas. Eur J Nucl Med Mol Imaging. 2010;37:310–8.

    PubMed  Google Scholar 

  196. Luboldt W, et al. Visualization of somatostatin receptors in prostate cancer and its bone metastases with Ga-68-DOTATOC PET/CT. Mol Imaging Biol. 2010;12:78–84.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Lai Ho MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ho, CL., Chen, S., Cheung, MK. (2014). Imaging of Tumor Metabolism: PET with Other Metabolites. In: Luna, A., Vilanova, J., Hygino da Cruz Jr., L., Rossi, S. (eds) Functional Imaging in Oncology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40412-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40412-2_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40411-5

  • Online ISBN: 978-3-642-40412-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics