Skip to main content

Abstract

We propose and evaluate a versatile scheme for image pre-segmentation that generates a partition of the image into a selectable number of patches (’superpixels’), under the constraint of obtaining maximum homogeneity of the ’texture’ inside of each patch, and maximum accordance of the contours with both the image content as well as a Gibbs-Markov random field model. In contrast to current state-of-the art approaches to superpixel segmentation, ’homogeneity’ does not limit itself to smooth region-internal signals and high feature value similarity between neighboring pixels, but is applicable also to highly textured scenes. The energy functional that is to be maximized for this purpose has only a very small number of design parameters, depending on the particular statistical model used for the images.

The capability of the resulting partitions to deform according to the image content can be controlled by a single parameter. We show by means of an extensive comparative experimental evaluation that the compactness-controlled contour-relaxed superpixels method outperforms the state-of-the art superpixel algorithms with respect to boundary recall and undersegmentation error while being faster or on a par with respect to runtime.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ren, X., Malik, J.: Learning a classification model for segmentation. In: ICCV (2003)

    Google Scholar 

  2. Ochs, P., Brox, T.: Object segmentation in video: A hierarchical variational approach for turning point trajectories into dense regions. In: ICCV (2011)

    Google Scholar 

  3. Wang, S., Lu, H., Yang, F., Yang, M.: Superpixel tracking. In: ICCV (2011)

    Google Scholar 

  4. Gorelick, L., Delong, A., Veksler, O., Boykov, Y.: Recursive MDL via graph cuts: Application to segmentation. In: ICCV (2011)

    Google Scholar 

  5. Mori, G., Ren, X., Efros, A.A., Malik, J.: Recovering human body configurations: combining segmentation and recognition. In: CVPR, pp. 326–333 (2004)

    Google Scholar 

  6. Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. PAMI 24, 603–619 (2002)

    Article  Google Scholar 

  7. Vincent, L., Soille, P.: Watersheds in digital spaces: an efficient algorithm based on immersion simulations. PAMI 13, 583–598 (1991)

    Article  Google Scholar 

  8. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Dickinson, S., Siddiqi, K.: Turbopixels: Fast superpixels using geometric flows. PAMI (2009)

    Google Scholar 

  9. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy optimization framework. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 211–224. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  10. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Suesstrunk, S.: SLIC Superpixels. Technical Report Nr. 149300, EPFL, Lausanne (CH) (2010)

    Google Scholar 

  11. Shi, J., Malik, J.: Normalized cuts and image segmentation. TPAMI 22 (2000)

    Google Scholar 

  12. Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. IJCV (2004)

    Google Scholar 

  13. Moore, A., Prince, S., Warrell, J., Mohammed, U., Jones, G.: Superpixel lattices. In: CVPR (2008)

    Google Scholar 

  14. Zhang, Y., Hartley, R., Mashford, J., Burn, S.: Superpixels via pseudo-boolean optimization. In: ICCV (2011)

    Google Scholar 

  15. Mester, R., Conrad, C., Guevara, A.: Multichannel segmentation using contour relaxation: Fast super-pixels and temporal propagation. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 250–261. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Guevara, A., Conrad, C., Mester, R.: Boosting segmentation results by contour relaxation. In: ICIP (2011)

    Google Scholar 

  17. Besag, J.: On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society, Series B 48, 259–302 (1986)

    MathSciNet  MATH  Google Scholar 

  18. Besag, J.: Spatial interaction and the statistical analysis of lattice systems. Journal of the RSS, Series B 36, 192–236 (1974)

    MathSciNet  MATH  Google Scholar 

  19. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, vol. 2, pp. 416–423. IEEE (2001)

    Google Scholar 

  20. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Conrad, C., Mertz, M., Mester, R. (2013). Contour-Relaxed Superpixels. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40395-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40394-1

  • Online ISBN: 978-3-642-40395-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics