Abstract
We address the problem of segmenting an image into a previously unknown number of segments from the perspective of graph partitioning. Specifically, we consider minimum multicuts of superpixel affinity graphs in which all affinities between non-adjacent superpixels are negative. We propose a relaxation by Lagrangian decomposition and a constrained set of re-parameterizations for which we can optimize exactly and efficiently. Our contribution is to show how the planarity of the adjacency graph can be exploited if the affinity graph is non-planar. We demonstrate the effectiveness of this approach in user-assisted image segmentation and show that the solution of the relaxed problem is fast and the relaxation is tight in practice.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andres, B.: https://github.com/bjoern-andres/graph
Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic image segmentation with closedness constraints. In: ICCV (2011)
Andres, B., Kroeger, T., Briggman, K.L., Denk, W., Korogod, N., Knott, G., Koethe, U., Hamprecht, F.A.: Globally optimal closed-surface segmentation for connectomics. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33(5), 898–916 (2011)
Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal coalition structures in graph games. arXiv ePrint (2011)
Bagon, S., Galun, M.: Large scale correlation clustering optimization. arXiv ePrint, abs/1112.2903 (2011)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56, 89–113 (2004)
Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59, 87–115 (1993)
Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schnörr, C.: Globally optimal image partitioning by multicuts. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 31–44. Springer, Heidelberg (2011)
Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for image segmentation. In: NIPS (2011)
Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation 1(1), 43–67 (2009)
Nowozin, S., Jegelka, S.: Solution stability in linear programming relaxations: graph partitioning and unsupervised learning. In: ICML, pp. 769–776 (2009)
Nowozin, S., Lampert, C.H.: Global interactions in random field models: A potential function ensuring connectedness. SIAM J. Img. Sci. 3(4), 1048–1074 (2010)
Shih, W.-K., Wu, S., Kuo, Y.S.: Unifying maximum cut and minimum cut of a planar graph. IEEE Trans. Comput. 39(5), 694–697 (1990)
Vitaladevuni, S.N.P., Basri, R.: Co-clustering of image segments using convex optimization applied to EM neuronal reconstruction. In: CVPR (2010)
Yarkony, J.: MAP inference in Planar Markov Random Fields with Applications to Computer Vision. PhD thesis, University of California, Irvine (2012)
Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast planar correlation clustering for image segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Andres, B. et al. (2013). Segmenting Planar Superpixel Adjacency Graphs w.r.t. Non-planar Superpixel Affinity Graphs. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_20
Download citation
DOI: https://doi.org/10.1007/978-3-642-40395-8_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40394-1
Online ISBN: 978-3-642-40395-8
eBook Packages: Computer ScienceComputer Science (R0)