Skip to main content

Segmenting Planar Superpixel Adjacency Graphs w.r.t. Non-planar Superpixel Affinity Graphs

  • Conference paper
Energy Minimization Methods in Computer Vision and Pattern Recognition (EMMCVPR 2013)

Abstract

We address the problem of segmenting an image into a previously unknown number of segments from the perspective of graph partitioning. Specifically, we consider minimum multicuts of superpixel affinity graphs in which all affinities between non-adjacent superpixels are negative. We propose a relaxation by Lagrangian decomposition and a constrained set of re-parameterizations for which we can optimize exactly and efficiently. Our contribution is to show how the planarity of the adjacency graph can be exploited if the affinity graph is non-planar. We demonstrate the effectiveness of this approach in user-assisted image segmentation and show that the solution of the relaxed problem is fast and the relaxation is tight in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andres, B.: https://github.com/bjoern-andres/graph

  2. Andres, B., Kappes, J.H., Beier, T., Köthe, U., Hamprecht, F.A.: Probabilistic image segmentation with closedness constraints. In: ICCV (2011)

    Google Scholar 

  3. Andres, B., Kroeger, T., Briggman, K.L., Denk, W., Korogod, N., Knott, G., Koethe, U., Hamprecht, F.A.: Globally optimal closed-surface segmentation for connectomics. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 778–791. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  4. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  5. Bachrach, Y., Kohli, P., Kolmogorov, V., Zadimoghaddam, M.: Optimal coalition structures in graph games. arXiv ePrint (2011)

    Google Scholar 

  6. Bagon, S., Galun, M.: Large scale correlation clustering optimization. arXiv ePrint, abs/1112.2903 (2011)

    Google Scholar 

  7. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56, 89–113 (2004)

    Article  MATH  Google Scholar 

  8. Chopra, S., Rao, M.R.: The partition problem. Math. Program. 59, 87–115 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kappes, J.H., Speth, M., Andres, B., Reinelt, G., Schnörr, C.: Globally optimal image partitioning by multicuts. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds.) EMMCVPR 2011. LNCS, vol. 6819, pp. 31–44. Springer, Heidelberg (2011)

    Google Scholar 

  10. Kim, S., Nowozin, S., Kohli, P., Yoo, C.D.: Higher-order correlation clustering for image segmentation. In: NIPS (2011)

    Google Scholar 

  11. Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching algorithm. Mathematical Programming Computation 1(1), 43–67 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nowozin, S., Jegelka, S.: Solution stability in linear programming relaxations: graph partitioning and unsupervised learning. In: ICML, pp. 769–776 (2009)

    Google Scholar 

  13. Nowozin, S., Lampert, C.H.: Global interactions in random field models: A potential function ensuring connectedness. SIAM J. Img. Sci. 3(4), 1048–1074 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Shih, W.-K., Wu, S., Kuo, Y.S.: Unifying maximum cut and minimum cut of a planar graph. IEEE Trans. Comput. 39(5), 694–697 (1990)

    Article  MathSciNet  Google Scholar 

  15. Vitaladevuni, S.N.P., Basri, R.: Co-clustering of image segments using convex optimization applied to EM neuronal reconstruction. In: CVPR (2010)

    Google Scholar 

  16. Yarkony, J.: MAP inference in Planar Markov Random Fields with Applications to Computer Vision. PhD thesis, University of California, Irvine (2012)

    Google Scholar 

  17. Yarkony, J., Ihler, A., Fowlkes, C.C.: Fast planar correlation clustering for image segmentation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part VI. LNCS, vol. 7577, pp. 568–581. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Andres, B. et al. (2013). Segmenting Planar Superpixel Adjacency Graphs w.r.t. Non-planar Superpixel Affinity Graphs. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, XC. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2013. Lecture Notes in Computer Science, vol 8081. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40395-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40395-8_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40394-1

  • Online ISBN: 978-3-642-40395-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics