Skip to main content

Bipolar Disorders

  • Chapter
  • First Online:
PET and SPECT in Psychiatry

Abstract

Bipolar disorder is characterized by (hypo)manic episodes and depressive episodes which alternate with euthymic periods. It causes serious disability with poor outcome, increased suicidality risk, and significant societal costs. This chapter describes the findings of the PET/SPECT research efforts and the current ideas on the pathophysiology of bipolar disorder.

First, the cerebral blood flow and cerebral metabolism findings in the prefrontal cortex, limbic system, subcortical structures, and other brain regions are discussed, followed by an overview of the corticolimbic theory of mood disorders that explains these observations.

Second, the neurotransmitter studies are discussed. The serotonin transporter alterations are described and the variation in study results is explained, followed by an overview of the results of the various dopamine receptor and transporter molecules studies, taking into account also the relation to psychosis.

Third, a concise overview is given of dominant bipolar disorder pathophysiological models, proposing starting points for future molecular imaging studies.

Finally, the most important conclusions are summarized, followed by remarks about the observed molecular imaging study designs specific for bipolar disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACC:

Anterior cingulate cortex

BA:

Brodmann areas

BD:

Bipolar disorder

BD-I:

Bipolar I disorder

BD-II:

Bipolar II disorder

CBF:

Cerebral blood flow

CFT:

[O-methyl-11C]-carbomethoxy-3β-(4-fluorophenyl)tropane

CMR:

Cerebral metabolic rate

DASB:

3-11C-amino-4-(2-dimethylaminomethylphenylsulfanyl)benzonitrile

DAT:

Dopamine transporter

DTBZ:

(+)-α-11C-dihydrotetrabenazine

DTI:

Diffusion tensor imaging

FA:

Fractional anisotropy

FDG:

18F-labeled fluorodeoxyglucose

fMRI:

Functional magnetic resonance imaging

HMPAO:

Hexamethylpropylene amine oxime

IDO:

Indoleamine 2,3 dioxygenase

IMP:

Iodoamphetamine

LCSPT:

Limbic-cortical-striatal-pallidal-thalamic

McNeil 5652:

Trans- 1,2,3,5,6,10- -hexahydro-6-[4-(methylthio) phenyl] pyrrolo-[2,1-a] isoquinoline

MD:

Mean diffusivity

MDD:

Major depressive disorder

MRS:

Magnetic resonance spectroscopy

NAA:

N-acetylaspartate

PBR:

Peripheral benzodiazepine receptor

PET:

Positron emission tomography

PFC:

Prefrontal cortex

SPECT:

Single-photon emission computed tomography

TZTP:

3-(3-(3-[18F]flouropropyl)thio)-1,2 5-thiadiazol-4-yl)-1,2,5,6-tetrahydro-1-methylpyridine

VMAT2:

Vesicular monoamine transporter 2

References

  • aan het Rot M, Mathew SJ, Charney DS (2009) Neurobiological mechanisms in major depressive disorder. CMAJ 180:305–313. doi:10.1503/cmaj.080697

    Google Scholar 

  • Almawi WY, Lipman ML, Stevens AC et al (1991) Abrogation of glucocorticoid-mediated inhibition of T cell proliferation by the synergistic action of IL-1, IL-6, and IFN-gamma. J Immunol 146:3523–3527

    PubMed  CAS  Google Scholar 

  • al-Mousawi AH, Evans N, Ebmeier KP et al (1996) Limbic dysfunction in schizophrenia and mania. A study using 18F- labelled fluorodeoxyglucose and positron emission tomography. Br J Psychiatry 169:509–516. doi:10.1192/bjp.169.4.509

    PubMed  CAS  Google Scholar 

  • Amsterdam JD, Newberg AB (2007) A preliminary study of dopamine transporter binding in bipolar and unipolar depressed patients and healthy controls. Neuropsychobiology 55:167–170. doi:10.1159/000106476

    PubMed  CAS  Google Scholar 

  • Anand A, Verhoeff P, Seneca N et al (2000) Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 157:1108–1114

    PubMed  CAS  Google Scholar 

  • Anand A, Barkay G, Dzemidzic M et al (2011) Striatal dopamine transporter availability in unmedicated bipolar disorder. Bipolar Disord 13:406–413. doi:10.1111/j.1399-5618.2011.00936.x

    PubMed  Google Scholar 

  • APA (2000) Diagnostic and statistical manual of mental disorders, 4th edn, Text revision (DSM-IV-TR). American Psychiatric Association, Washington, DC. doi:10.1176/appi.books.9780890423349

    Google Scholar 

  • Arts B, Jabben N, Krabbendam L, van Os J (2008) Meta-analyses of cognitive functioning in euthymic bipolar patients and their first-degree relatives. Psychol Med 38:771–785. doi:10.1017/S0033291707001675

    PubMed  CAS  Google Scholar 

  • Babcock TA, Carlin JM (2000) Transcriptional activation of indoleamine dioxygenase by interleukin 1 and tumor necrosis factor alpha in interferon-treated epithelial cells. Cytokine 12:588–594. doi:10.1006/cyto.1999.0661

    PubMed  CAS  Google Scholar 

  • Baldessarini RJ, Tondo L (2003) Suicide risk and treatments for patients with bipolar disorder. JAMA 290:1517–1519. doi:10.1001/jama.290.11.1517

    PubMed  CAS  Google Scholar 

  • Bauer M, London ED, Rasgon N et al (2005) Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression. Mol Psychiatry 10:456–469. doi:10.1038/sj.mp.4001647

    PubMed  CAS  Google Scholar 

  • Baxter LR, Phelps ME, Mazziotta JC et al (1985) Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18. Arch Gen Psychiatry 42:441–447

    PubMed  Google Scholar 

  • Baxter LR, Schwartz JM, Phelps ME et al (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46:243–250

    PubMed  CAS  Google Scholar 

  • Beaulieu J, Gainetdinov RR (2011) The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 63:182–217. doi:10.1124/pr.110.002642

    PubMed  CAS  Google Scholar 

  • Begley CE, Annegers JF, Swann AC et al (2001) The lifetime cost of bipolar disorder in the US: an estimate for new cases in 1998. Pharmacoeconomics 19:483–495

    PubMed  CAS  Google Scholar 

  • Bellani M, Brambilla P (2011) Diffusion imaging studies of white matter integrity in bipolar disorder. Epidemiol Psychiatr Sci 20:137–140

    PubMed  CAS  Google Scholar 

  • Benabarre A, Vieta E, MartĂ­nez-Arán A et al (2005) Neuropsychological disturbances and cerebral blood flow in bipolar disorder. Aust N Z J Psychiatry 39:227–234. doi:10.1111/j.1440-1614.2004.01558.x

    PubMed  Google Scholar 

  • Bender DA, McCreanor GM (1985) Kynurenine hydroxylase: a potential rate-limiting enzyme in tryptophan metabolism. Biochem Soc Trans 13:441–443

    PubMed  CAS  Google Scholar 

  • Blumberg HP, Stern E, Ricketts S et al (1999) Rostral and orbital prefrontal cortex dysfunction in the manic state of bipolar disorder. Am J Psychiatry 156:1986–1988

    PubMed  CAS  Google Scholar 

  • Blumberg HP, Stern E, Martinez D et al (2000) Increased anterior cingulate and caudate activity in bipolar mania. Biol Psychiatry 48:1045–1052

    PubMed  CAS  Google Scholar 

  • Bonne O, Krausz Y, Gorfine M et al (1996) Cerebral hypoperfusion in medication resistant, depressed patients assessed by Tc99m HMPAO SPECT. J Affect Disord 41:163–171

    PubMed  CAS  Google Scholar 

  • Bora E, Yucel M, Pantelis C (2009) Cognitive endophenotypes of bipolar disorder: a meta-analysis of neuropsychological deficits in euthymic patients and their first-degree relatives. J Affect Disord 113:1–20. doi:10.1016/j.jad.2008.06.009

    PubMed  Google Scholar 

  • Brooks JO, Wang PW, Strong C et al (2006) Preliminary evidence of differential relations between prefrontal cortex metabolism and sustained attention in depressed adults with bipolar disorder and healthy controls. Bipolar Disord 8:248–254. doi:10.1111/j.1399-5618.2006.00310.x

    PubMed  Google Scholar 

  • Brooks JO, Hoblyn JC, Woodard SA et al (2009) Corticolimbic metabolic dysregulation in euthymic older adults with bipolar disorder. J Psychiatr Res 43:497–502. doi:10.1016/j.jpsychires.2008.08.001

    PubMed Central  PubMed  Google Scholar 

  • Buchsbaum MS, Wu J, DeLisi LE et al (1986) Frontal cortex and basal ganglia metabolic rates assessed by positron emission tomography with [18F]2-deoxyglucose in affective illness. J Affect Disord 10:137–152

    PubMed  CAS  Google Scholar 

  • Bunevicius R, Peceliuniene J, Mickuviene N et al (2007) Mood and thyroid immunity assessed by ultrasonographic imaging in a primary health care. J Affect Disord 97:85–90. doi:10.1016/j.jad.2006.05.029

    PubMed  Google Scholar 

  • Cannon DM, Carson RE, Nugent AC et al (2006a) Reduced muscarinic type 2 receptor binding in subjects with bipolar disorder. Arch Gen Psychiatry 63:741–747. doi:10.1001/archpsyc.63.7.741

    PubMed  CAS  Google Scholar 

  • Cannon DM, Ichise M, Fromm SJ et al (2006b) Serotonin transporter binding in bipolar disorder assessed using [11C]DASB and positron emission tomography. Biol Psychiatry 60:207–217. doi:10.1016/j.biopsych.2006.05.005

    PubMed  CAS  Google Scholar 

  • Cannon DM, Ichise M, Rollis D et al (2007) Elevated serotonin transporter binding in major depressive disorder assessed using positron emission tomography and [11C]DASB; comparison with bipolar disorder. Biol Psychiatry 62:870–877. doi:10.1016/j.biopsych.2007.03.016

    PubMed  CAS  Google Scholar 

  • Cannon DM, Klaver JK, Gandhi SK et al (2011) Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder. Mol Psychiatry 16:407–418. doi:10.1038/mp.2010.24

    PubMed Central  PubMed  CAS  Google Scholar 

  • Capuron L, Ravaud A, Neveu PJ et al (2002) Association between decreased serum tryptophan concentrations and depressive symptoms in cancer patients undergoing cytokine therapy. Mol Psychiatry 7:468–473. doi:10.1038/sj.mp.4000995

    PubMed  CAS  Google Scholar 

  • Carta MG, Loviselli A, Hardoy MC et al (2004) The link between thyroid autoimmunity (antithyroid peroxidase autoantibodies) with anxiety and mood disorders in the community: a field of interest for public health in the future. BMC Psychiatry 4:25. doi:10.1186/1471-244X-4-25

    PubMed Central  PubMed  Google Scholar 

  • Cataldo AM, McPhie DL, Lange NT et al (2010) Abnormalities in mitochondrial structure in cells from patients with bipolar disorder. Am J Pathol 177:575–585. doi:10.2353/ajpath.2010.081068

    PubMed Central  PubMed  Google Scholar 

  • Chang TT, Yeh TL, Chiu NT et al (2010) Higher striatal dopamine transporters in euthymic patients with bipolar disorder: a SPECT study with [Tc] TRODAT-1. Bipolar Disord 12:102–106. doi:10.1111/j.1399-5618.2009.00771.x

    PubMed  Google Scholar 

  • Chiarugi A, Calvani M, Meli E et al (2001) Synthesis and release of neurotoxic kynurenine metabolites by human monocyte-derived macrophages. J Neuroimmunol 120:190–198

    PubMed  CAS  Google Scholar 

  • Chou Y-H, Wang S-J, Lin C-L et al (2010) Decreased brain serotonin transporter binding in the euthymic state of bipolar I but not bipolar II disorder: a SPECT study. Bipolar Disord 12:312–318. doi:10.1111/j.1399-5618.2010.00800.x

    PubMed  Google Scholar 

  • Cousins DA, Butts K, Young AH (2009) The role of dopamine in bipolar disorder. Bipolar Disord 11:787–806. doi:10.1111/j.1399-5618.2009.00760.x

    PubMed  CAS  Google Scholar 

  • Culha AF, Osman O, DogangĂĽn Y et al (2008) Changes in regional cerebral blood flow demonstrated by 99mTc-HMPAO SPECT in euthymic bipolar patients. Eur Arch Psychiatry Clin Neurosci 258:144–151. doi:10.1007/s00406-007-0766-7

    PubMed  Google Scholar 

  • Curreli S, Romerio F, Mirandola P et al (2001) Human primary CD4 + T cells activated in the presence of IFN-alpha 2b express functional indoleamine 2,3-dioxygenase. J Interferon Cytokine Res 21:431–437. doi:10.1089/107999001750277916

    PubMed  CAS  Google Scholar 

  • Dager SR, Friedman SD, Parow A et al (2004) Brain metabolic alterations in medication-free patients with bipolar disorder. Arch Gen Psychiatry 61:450–458. doi:10.1001/archpsyc.61.5.450

    PubMed  CAS  Google Scholar 

  • Dilsaver SC (1986) Pathophysiology of “cholinoceptor supersensitivity” in affective disorders. Biol Psychiatry 21:813–829

    PubMed  CAS  Google Scholar 

  • Doorduin J, de Vries EFJ, Dierckx RA, Klein HC (2008) PET imaging of the peripheral benzodiazepine receptor: monitoring disease progression and therapy response in neurodegenerative disorders. Curr Pharm Des 14:3297–3315

    PubMed  CAS  Google Scholar 

  • Doorduin J, de Vries EFJ, Willemsen ATM et al (2009) Neuroinflammation in schizophrenia-related psychosis: a PET study. J Nucl Med 50:1801–1807. doi:10.2967/jnumed.109.066647

    PubMed  Google Scholar 

  • Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48:813–829

    PubMed  CAS  Google Scholar 

  • Drevets WC, Price JL, Simpson JR et al (1997) Subgenual prefrontal cortex abnormalities in mood disorders. Nature 386:824–827. doi:10.1038/386824a0

    PubMed  CAS  Google Scholar 

  • Drevets WC, Price JL, Bardgett ME et al (2002) Glucose metabolism in the amygdala in depression: relationship to diagnostic subtype and plasma cortisol levels. Pharmacol Biochem Behav 71:431–447

    PubMed  CAS  Google Scholar 

  • Drevets WC, Price JL, Furey ML (2008) Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Struct Funct 213:93–118. doi:10.1007/s00429-008-0189-x

    PubMed Central  PubMed  Google Scholar 

  • Dunn RT, Kimbrell TA, Ketter TA et al (2002) Principal components of the Beck Depression Inventory and regional cerebral metabolism in unipolar and bipolar depression. Biol Psychiatry 51:387–399. doi:10.1016/S0006-3223(01)01244-6

    PubMed  CAS  Google Scholar 

  • Dunn RT, Willis MW, Benson BE et al (2005) Preliminary findings of uncoupling of flow and metabolism in unipolar compared with bipolar affective illness and normal controls. Psychiatry Res 140:181–198. doi:10.1016/j.pscychresns.2005.07.005

    PubMed  CAS  Google Scholar 

  • Fattal O, Link J, Quinn K et al (2007) Psychiatric comorbidity in 36 adults with mitochondrial cytopathies. CNS Spectr 12:429–438

    PubMed  Google Scholar 

  • Frey BN, Stanley JA, Nery FG et al (2007) Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord 9(Suppl 1):119–127. doi:10.1111/j.1399-5618.2007.00454.x

    PubMed  Google Scholar 

  • Gillard JH, Waldman AD, Barker PB (2004) Clinical MR Neuroimaging. Spectroscopy. doi:10.1017/CBO9780511544958

    Google Scholar 

  • Ginovart N (2005) Imaging the dopamine system with in vivo [11C]raclopride displacement studies: understanding the true mechanism. Mol Imaging Biol 7:45–52. doi:10.1007/s11307-005-0932-0

    PubMed  Google Scholar 

  • Gonul AS, Coburn K, Kula M (2009) Cerebral blood flow, metabolic, receptor, and transporter changes in bipolar disorder: the role of PET and SPECT studies. Int Rev Psychiatry 21:323–335. doi:10.1080/09540260902962131

    PubMed  Google Scholar 

  • Goodwin FK (2007) Manic-depressive illness: bipolar disorders and recurrent depression, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Goodwin GM, Cavanagh JT, Glabus MF et al (1997) Uptake of 99mTc-exametazime shown by single photon emission computed tomography before and after lithium withdrawal in bipolar patients: associations with mania. Br J Psychiatry 170:426–430. doi:10.1192/bjp.170.5.426

    PubMed  CAS  Google Scholar 

  • Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–4510.1192/bjp.170.5.426

    PubMed  Google Scholar 

  • Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 98:4259–4264. doi:10.1073/pnas.071043098

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gyulai L, Alavi A, Broich K et al (1997) I-123 iofetamine single-photon computed emission tomography in rapid cycling bipolar disorder: a clinical study. Biol Psychiatry 41:152–161

    PubMed  CAS  Google Scholar 

  • Hartman DS, Civelli O (1996) Molecular attributes of dopamine receptors: new potential for antipsychotic drug development. Ann Med 28:211–219

    PubMed  CAS  Google Scholar 

  • Heng S, Song AW, Sim K (2010) White matter abnormalities in bipolar disorder: insights from diffusion tensor imaging studies. J Neural Transm 117:639–654. doi:10.1007/s00702-010-0368-9

    PubMed  Google Scholar 

  • Hillegers MH, Reichart CG, Wals M et al (2005) Five-year prospective outcome of psychopathology in the adolescent offspring of bipolar parents. Bipolar Disord 7:344–350. doi:10.1111/j.1399-5618.2005.00215.x

    PubMed  Google Scholar 

  • Hoekstra R, Fekkes D, Pepplinkhuizen L et al (2006) Nitric oxide and neopterin in bipolar affective disorder. Neuropsychobiology 54:75–81. doi:10.1159/000096042

    PubMed  CAS  Google Scholar 

  • Ichimiya T, Suhara T, Sudo Y, Okubo Y, Nakayama K, Nankai M, et al (2002) Serotonin transporter binding in patients with mood disorders: a PET study with [11C](+)McN5652. Biol Psychiatry 51:715–22

    Google Scholar 

  • Ito H, Kawashima R, Awata S et al (1996) Hypoperfusion in the limbic system and prefrontal cortex in depression: SPECT with anatomic standardization technique. J Nucl Med 37:410–414

    PubMed  CAS  Google Scholar 

  • Ito K, Chung KF, Adcock IM (2006) Update on glucocorticoid action and resistance. J Allergy Clin Immunol 117:522–543. doi:10.1016/j.jaci.2006.01.032

    PubMed  CAS  Google Scholar 

  • Kato T (2008) Molecular neurobiology of bipolar disorder: a disease of “mood-stabilizing neurons”? Trends Neurosci 31:495–503. doi:10.1016/j.tins.2008.07.007

    PubMed  CAS  Google Scholar 

  • Kato T, Takahashi S, Shioiri T, Inubushi T (1993) Alterations in brain phosphorous metabolism in bipolar disorder detected by in vivo 31P and 7Li magnetic resonance spectroscopy. J Affect Disord 27:53–59

    PubMed  CAS  Google Scholar 

  • Kempton MJ, Geddes JR, Ettinger U et al (2008) Meta-analysis, database, and meta-regression of 98 structural imaging studies in bipolar disorder. Arch Gen Psychiatry 65:1017–1032. doi:10.1001/archpsyc.65.9.1017

    PubMed  Google Scholar 

  • Ketter TA, Kimbrell TA, George MS et al (2001) Effects of mood and subtype on cerebral glucose metabolism in treatment-resistant bipolar disorder. Biol Psychiatry 49:97–109. doi:10.1016/S0006-3223(00)00975-6

    PubMed  CAS  Google Scholar 

  • KrĂĽger S, Alda M, Young LT et al (2006) Risk and resilience markers in bipolar disorder: brain responses to emotional challenge in bipolar patients and their healthy siblings. Am J Psychiatry 163:257–264. doi:10.1176/appi.ajp.163.2.257

    PubMed  Google Scholar 

  • Kupferschmidt DA, Zakzanis KK (2011) Toward a functional neuroanatomical signature of bipolar disorder: quantitative evidence from the neuroimaging literature. Psychiatry Res 193:71–79. doi:10.1016/j.pscychresns.2011.02.011

    PubMed  Google Scholar 

  • Le Bihan D (1996) Molecular diffusion, tissue microdynamics and microstructure. NMR Biomed 8:375–386

    Google Scholar 

  • Le Bihan D (2003) Looking into the functional architecture of the brain with diffusion MRI. Nat Rev Neurosci 4:469–480. doi:10.1038/nrn1119

    PubMed  Google Scholar 

  • Little KY, Krolewski DM, Zhang L, Cassin BJ (2003) Loss of striatal vesicular monoamine transporter protein (VMAT2) in human cocaine users. Am J Psychiatry 160:47–55

    PubMed  Google Scholar 

  • Luu P, Posner MI (2003) Anterior cingulate cortex regulation of sympathetic activity. Brain 126:2119–2120. doi:10.1093/brain/awg257

    PubMed  Google Scholar 

  • Mah L, Zarate CA, Singh J et al (2007) Regional cerebral glucose metabolic abnormalities in bipolar II depression. Biol Psychiatry 61:765–775. doi:10.1016/j.biopsych.2006.06.009

    PubMed  CAS  Google Scholar 

  • Mayberg HS (1997) Limbic-cortical dysregulation: a proposed model of depression. J Neuropsychiatry Clin Neurosci 9:471–481

    PubMed  CAS  Google Scholar 

  • Merikangas KR, Akiskal HS, Angst J et al (2007) Lifetime and 12-month prevalence of bipolar spectrum disorder in the National Comorbidity Survey replication. Arch Gen Psychiatry 64:543–552. doi:10.1001/archpsyc.64.5.543

    PubMed Central  PubMed  Google Scholar 

  • Miller EK, Freedman DJ, Wallis JD (2002) The prefrontal cortex: categories, concepts and cognition. Philos Trans R Soc Lond B Biol Sci 357:1123–1136. doi:10.1098/rstb.2002.1099

    PubMed Central  PubMed  Google Scholar 

  • Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61:519–525

    PubMed  CAS  Google Scholar 

  • Myint A-M, Kim YK, Verkerk R et al (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98:143–151. doi:10.1016/j.jad.2006.07.013

    PubMed  CAS  Google Scholar 

  • Naydenov AV, MacDonald ML, Ongur D, Konradi C (2007) Differences in lymphocyte electron transport gene expression levels between subjects with bipolar disorder and normal controls in response to glucose deprivation stress. Arch Gen Psychiatry 64:555–564. doi:10.1001/archpsyc.64.5.555

    PubMed  Google Scholar 

  • O’Brien SM, Scully P, Scott LV, Dinan TG (2006) Cytokine profiles in bipolar affective disorder: focus on acutely ill patients. J Affect Disord 90:263–267. doi:10.1016/j.jad.2005.11.015

    PubMed  Google Scholar 

  • OngĂĽr D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460:425–449. doi:10.1002/cne.10609

    PubMed  Google Scholar 

  • Oquendo MA, Hastings RS, Huang Y-Y et al (2007) Brain serotonin transporter binding in depressed patients with bipolar disorder using positron emission tomography. Arch Gen Psychiatry 64:201–208. doi:10.1001/archpsyc.64.2.201

    PubMed Central  PubMed  CAS  Google Scholar 

  • Packard MG, Knowlton BJ (2002) Learning and memory functions of the Basal Ganglia. Annu Rev Neurosci 25:563–593. doi:10.1146/annurev.neuro.25.112701.142937

    PubMed  CAS  Google Scholar 

  • Padmos RC, Hillegers MHJ, Knijff EM et al (2008) A discriminating messenger RNA signature for bipolar disorder formed by an aberrant expression of inflammatory genes in monocytes. Arch Gen Psychiatry 65:395–407. doi:10.1001/archpsyc.65.4.395

    PubMed  CAS  Google Scholar 

  • Pariante CM, Pearce BD, Pisell TL et al (1999) The proinflammatory cytokine, interleukin-1alpha, reduces glucocorticoid receptor translocation and function. Endocrinology 140:4359–4366

    PubMed  CAS  Google Scholar 

  • Pearlson GD, Wong DF, Tune LE et al (1995) In vivo D2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry 52:471–477

    PubMed  CAS  Google Scholar 

  • Perkins MN, Stone TW (1982) An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res 247:184–187

    PubMed  CAS  Google Scholar 

  • Phillips ML, Ladouceur CD, Drevets WC (2008) A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Mol Psychiatry 13(829):833–857. doi:10.1038/mp.2008.65

    Google Scholar 

  • Pini S, de Queiroz V, Pagnin D et al (2005) Prevalence and burden of bipolar disorders in European countries. Eur Neuropsychopharmacol 15:425–434. doi:10.1016/j.euroneuro.2005.04.011

    PubMed  CAS  Google Scholar 

  • Port JD, Unal SS, Mrazek DA, Marcus SM (2008) Metabolic alterations in medication-free patients with bipolar disorder: a 3T CSF-corrected magnetic resonance spectroscopic imaging study. Psychiatry Res 162:113–121. doi:10.1016/j.pscychresns.2007.08.004

    PubMed  CAS  Google Scholar 

  • Price JL, Drevets WC (2010) Neurocircuitry of mood disorders. Neuropsychopharmacology 35:192–216. doi:10.1038/npp.2009.104

    PubMed Central  PubMed  Google Scholar 

  • Rubin E, Sackeim HA, Prohovnik I et al (1995) Regional cerebral blood flow in mood disorders: IV. Comparison of mania and depression. Psychiatry Res 61:1–10

    PubMed  CAS  Google Scholar 

  • Rubinsztein JS, Fletcher PC, Rogers RD et al (2001) Decision-making in mania: a PET study. Brain 124:2550–2563

    PubMed  CAS  Google Scholar 

  • Rush AJ, Schlesser MA, Stokeley E et al (1982) Cerebral blood flow in depression and mania. Psychopharmacol Bull 6–7

    Google Scholar 

  • Sachs GS, Nierenberg AA, Calabrese JR et al (2007) Effectiveness of adjunctive antidepressant treatment for bipolar depression. N Engl J Med 356:1711–1722. doi:10.1056/NEJMoa064135

    PubMed  CAS  Google Scholar 

  • Savitz J, Drevets WC (2009) Bipolar and major depressive disorder: neuroimaging the developmental-degenerative divide. Neurosci Biobehav Rev 33:699–771. doi:10.1016/j.neubiorev.2009.01.004

    PubMed Central  PubMed  Google Scholar 

  • Schildkraut JJ (1965) The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 122:509–522

    PubMed  CAS  Google Scholar 

  • Silfverskiöld P, Risberg J (1989) Regional cerebral blood flow in depression and mania. Arch Gen Psychiatry 46:253–259

    PubMed  Google Scholar 

  • Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35:298–306. doi:10.1016/0306-9877(91)90272-Z

    PubMed  CAS  Google Scholar 

  • Spijker AT, Van Rossum EFC (2012) Glucocorticoid sensitivity in mood disorders. Neuroendocrinology 95:179–186. doi:10.1159/000329846

    PubMed  CAS  Google Scholar 

  • Suhara T, Nakayama K, Inoue O et al (1992) D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology (Berl) 106:14–18

    CAS  Google Scholar 

  • Suppes T, Leverich GS, Keck PE et al (2001) The Stanley Foundation Bipolar Treatment Outcome Network. II. Demographics and illness characteristics of the first 261 patients. J Affect Disord 67:45–59

    PubMed  CAS  Google Scholar 

  • Tutus A, Simsek A, Sofuoglu S et al (1998) Changes in regional cerebral blood flow demonstrated by single photon emission computed tomography in depressive disorders: comparison of unipolar vs. bipolar subtypes. Psychiatry Res 83:169–177

    PubMed  CAS  Google Scholar 

  • van Berckel BN, Bossong MG, Boellaard R et al (2008) Microglia activation in recent-onset schizophrenia: a quantitative (R)-[11C]PK11195 positron emission tomography study. Biol Psychiatry 64:820–822. doi:10.1016/j.biopsych.2008.04.025

    PubMed  Google Scholar 

  • Vita A, De Peri L, Sacchetti E (2009) Gray matter, white matter, brain, and intracranial volumes in first-episode bipolar disorder: a meta-analysis of magnetic resonance imaging studies. Bipolar Disord 11:807–814. doi:10.1111/j.1399-5618.2009.00759.x

    PubMed  Google Scholar 

  • Vonk R, van der Schot AC, Kahn RS et al (2007) Is autoimmune thyroiditis part of the genetic vulnerability (or an endophenotype) for bipolar disorder? Biol Psychiatry 62:135–140. doi:10.1016/j.biopsych.2006.08.041

    PubMed  CAS  Google Scholar 

  • Wichers MC, Koek GH, Robaeys G et al (2005) IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Mol Psychiatry 10:538–544. doi:10.1038/sj.mp.4001600

    PubMed  CAS  Google Scholar 

  • Wong DF, Wagner HN, Pearlson G et al (1985) Dopamine receptor binding of C-11-3-N-methylspiperone in the caudate in schizophrenia and bipolar disorder: a preliminary report. Psychopharmacol Bull 21:595–598

    PubMed  CAS  Google Scholar 

  • World Health Organization (2001) The world health report 2001: mental health: new understanding, new hope. World Health Organization, Geneva

    Google Scholar 

  • Yatham LN, Liddle PF, Shiah I-S, Lam RW, Ngan E, Scarrow G et al (2002a) PET study of [(18)F]6-fluoro-L-dopa uptake in neuroleptic- and mood-stabilizer-naive first-episode nonpsychotic mania: effects of treatment with divalproex sodium. Am J Psychiatry 159:768–774

    PubMed  Google Scholar 

  • Yatham LN, Liddle PF, Lam RW et al (2002b) PET study of the effects of valproate on dopamine D(2) receptors in neuroleptic- and mood-stabilizer-naive patients with nonpsychotic mania. Am J Psychiatry 159:1718–1723

    PubMed  Google Scholar 

  • Yatham LN, Goldstein JM, Vieta E et al (2005a) Atypical antipsychotics in bipolar depression: potential mechanisms of action. J Clin Psychiatry 66(Suppl 5):40–48

    PubMed  CAS  Google Scholar 

  • Yatham LN, Liddle PF, Lam RW et al (2005b) A positron emission tomography study of the effects of treatment with valproate on brain 5-HT2A receptors in acute mania. Bipolar Disord 7(Suppl 5):53–57. doi:10.1111/j.1399-5618.2005.00252.x

    PubMed  CAS  Google Scholar 

  • Yildiz A, Vieta E, Leucht S, Baldessarini RJ (2011) Efficacy of antimanic treatments: meta-analysis of randomized, controlled trials. Neuropsychopharmacology 36:375–389. doi:10.1038/npp.2010.192

    PubMed Central  PubMed  CAS  Google Scholar 

  • Zanetti MV, Jackowski MP, Versace A et al (2009) State-dependent microstructural white matter changes in bipolar I depression. Eur Arch Psychiatry Clin Neurosci 259:316–328. doi:10.1007/s00406-009-0002-8

    PubMed Central  PubMed  Google Scholar 

  • Zubieta JK, Taylor SF, Huguelet P et al (2001) Vesicular monoamine transporter concentrations in bipolar disorder type I, schizophrenia, and healthy subjects. Biol Psychiatry 49:110–116

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartholomeus (Benno) C. M. Haarman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Haarman, B.(.C.M., Van der Lek, R.F.R., Ruhé, H.G., de Groot, J.C., Nolen, W.A., Doorduin, J. (2014). Bipolar Disorders. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., den Boer, J. (eds) PET and SPECT in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40384-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40384-2_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40383-5

  • Online ISBN: 978-3-642-40384-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics