Skip to main content

Abnormalities in Reward Processing in Drug Addiction: Lessons from Neuropsychology and Neuroimaging Studies

  • Chapter
  • First Online:
PET and SPECT in Psychiatry
  • 1743 Accesses

Abstract

Drug addiction is characterized by compulsive drug use despite detrimental consequences to the individual’s functioning as associated with increased salience attributed to the drug and drug-related cues at the expense of nondrug-related reinforcers. Underlying mechanisms include neuroadaptations of the dopaminergic striato-prefrontal circuit to intermittent and chronic supraphysiological stimulation by drugs that increase reward thresholds and decrease sensitivity to reward. This chapter summarizes behavioral and neurobiological evidence for decreased valuation of nondrug reinforcers and cues in individuals with chronic drug use or addiction. It is recommended that future research directly compares between responses to drug and nondrug-related stimuli in addicted individuals. The goal is to devise novel strategies to normalize reward processing, thereby decreasing anhedonia and increasing the motivation to attain alternative nondrug reinforcers, in addicted individuals.

Notice: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CHI-886 with the U.S. Department of Energy. The United States Government retains, and the publisher, by accepting the article for publication, acknowledges, a world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguilar de Arcos F, Verdejo-Garcia A, Peralta-Ramirez MI, Sanchez-Barrera M, Perez-Garcia M (2005) Experience of emotions in substance abusers exposed to images containing neutral, positive, and negative affective stimuli. Drug Alcohol Depend 78:159–167

    PubMed  Google Scholar 

  • Aharonovich E, Nunes E, Hasin D (2003) Cognitive impairment, retention and abstinence among cocaine abusers in cognitive-behavioral treatment. Drug Alcohol Depend 71(2):207–211

    PubMed  Google Scholar 

  • Aharonovich E, Hasin DS, Brooks AC, Liu X, Bisaga A, Nunes EV (2006) Cognitive deficits predict low treatment retention in cocaine dependent patients. Drug Alcohol Depend 81(3):313–322

    PubMed  Google Scholar 

  • Ahmed SH, Koob GF (1998) Transition from moderate to excessive drug intake: change in hedonic set point. Science 282(5387):298–300

    PubMed  CAS  Google Scholar 

  • Ahmed SH, Kenny PJ, Koob GF, Markou A (2002) Neurobiological evidence for hedonic allostasis associated with escalating cocaine use. Nat Neurosci 5(7):625–626

    PubMed  CAS  Google Scholar 

  • Aigner TG, Balster RL (1978) Choice behavior in rhesus monkeys: cocaine versus food. Science 201(4355):534–535

    PubMed  CAS  Google Scholar 

  • American-Psychiatric-Association (1994) Diagnostic and statistical manual of mental disorders, 4th edn. American Psychiatric Association, Washington, DC

    Google Scholar 

  • Artiges E, Ricalens E, Berthoz S, Krebs MO, Penttila J, Trichard C et al (2009) Exposure to smoking cues during an emotion recognition task can modulate limbic fMRI activation in cigarette smokers. Addict Biol 14(4):469–477

    PubMed  Google Scholar 

  • Asensio S, Romero MJ, Romero FJ, Wong C, Alia-Klein N, Tomasi D et al (2009) Striatal dopamine D2 receptor availability predicts the thalamic and medial prefrontal responses to reward in cocaine abusers three years later. Synapse 64(5):397–402

    Google Scholar 

  • Bassareo V, De Luca MA, Di Chiara G (2002) Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 22(11):4709–4719

    PubMed  CAS  Google Scholar 

  • Bechara A, Dolan S, Hindes A (2002) Decision-making and addiction (part II): myopia for the future or hypersensitivity to reward? Neuropsychologia 40(10):1690–1705

    PubMed  Google Scholar 

  • Benson TA, Little CS, Henslee AM, Correia CJ (2009) Effects of reinforcer magnitude and alternative reinforcer delay on preference for alcohol during a multiple-choice procedure. Drug Alcohol Depend 100(1–2):161–163

    PubMed  Google Scholar 

  • Blum K, Braverman ER, Holder JM, Lubar JF et al (2000) Reward deficiency syndrome: a biogenetic model for the diagnosis and treatment of impulsive, addictive, and compulsive behaviors. J Psychoactive Drugs 32(Suppl i–iv):1–112.

    Google Scholar 

  • Breiter HC, Aharon I, Kahneman D, Dale A, Shizgal P (2001) Functional imaging of neural responses to expectancy and experience of monetary gains and losses. Neuron 30(2):619–639

    PubMed  CAS  Google Scholar 

  • Brody AL, Mandelkern MA, London ED, Childress AR, Lee GS, Bota RG et al (2002) Brain metabolic changes during cigarette craving. Arch Gen Psychiatry 59(12):1162–1172

    PubMed  Google Scholar 

  • Buhler M, Vollstadt-Klein S, Kobiella A, Budde H, Reed LJ, Braus DF et al (2010) Nicotine dependence is characterized by disordered reward processing in a network driving motivation. Biol Psychiatry 67(8):745–752

    PubMed  CAS  Google Scholar 

  • Carter BL, Tiffany ST (1999) Meta-analysis of cue-reactivity in addiction research. Addiction 94(3):327–340

    PubMed  CAS  Google Scholar 

  • Centers for Disease Control and Prevention (2011) Decrease in smoking prevalence–Minnesota, 1999–2010. MMWR Morb Mortal Wkly Rep 60(5):138–141

    Google Scholar 

  • Cools R, Frank MJ, Gibbs SE, Miyakawa A, Jagust W, D’Esposito M (2009) Striatal dopamine predicts outcome-specific reversal learning and its sensitivity to dopaminergic drug administration. J Neurosci 29(5):1538–1543

    PubMed Central  PubMed  CAS  Google Scholar 

  • de Ruiter MB, Veltman DJ, Goudriaan AE, Oosterlaan J, Sjoerds Z, van den Brink W (2009) Response perseveration and ventral prefrontal sensitivity to reward and punishment in male problem gamblers and smokers. Neuropsychopharmacology 34(4):1027–1038

    PubMed  Google Scholar 

  • Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017

    PubMed  CAS  Google Scholar 

  • Donny EC, Bigelow GE, Walsh SL (2003) Choosing to take cocaine in the human laboratory: effects of cocaine dose, inter-choice interval, and magnitude of alternative reinforcement. Drug Alcohol Depend 69(3):289–301

    PubMed  CAS  Google Scholar 

  • Duka T, Townshend JM (2004) The priming effect of alcohol pre-load on attentional bias to alcohol-related stimuli. Psychopharmacology (Berl) 176:353–361

    CAS  Google Scholar 

  • Dunning JP, Parvaz MA, Hajcak G, Maloney T, Alia-Klein N, Woicik PA et al (2011) Motivated attention to cocaine and emotional cues in abstinent and current cocaine users–an ERP study. Eur J Neurosci 33(9):1716–1723

    PubMed Central  PubMed  Google Scholar 

  • Ehrman R, Robbins SJ, Childress AR, O’Brien CP (1992) Conditioned responses to cocaine-related stimuli in cocaine abuse patients. Psychopharmacology (Berl) 107(4):523–529

    CAS  Google Scholar 

  • Elliott R, Newman JL, Longe OA, Deakin JF (2003) Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. J Neurosci 23(1):303–307

    PubMed  CAS  Google Scholar 

  • Ferrari V, Codispoti M, Cardinale R, Bradley MM (2008) Directed and motivated attention during processing of natural scenes. J Cogn Neurosci 20(10):1753–1761

    PubMed  Google Scholar 

  • Fiorino DF, Phillips AG (1999a) Facilitation of sexual behavior and enhanced dopamine efflux in the nucleus accumbens of male rats after D-amphetamine-induced behavioral sensitization. J Neurosci 19(1):456–463

    PubMed  CAS  Google Scholar 

  • Fiorino DF, Phillips AG (1999b) Facilitation of sexual behavior in male rats following d-amphetamine-induced behavioral sensitization. Psychopharmacology (Berl) 142(2):200–208

    CAS  Google Scholar 

  • Fox HC, Talih M, Malison R, Anderson GM, Kreek MJ, Sinha R (2005) Frequency of recent cocaine and alcohol use affects drug craving and associated responses to stress and drug-related cues. Psychoneuroendocrinology 30(9):880–891

    PubMed  CAS  Google Scholar 

  • Franken IHA, Kroon LY, Wiers RW, Jansen A (2000) Selective cognitive processing of drug cues in heroin dependence. J Psychopharmacol 14:395–400

    PubMed  CAS  Google Scholar 

  • Garavan H, Hester R (2007) The role of cognitive control in cocaine dependence. Neuropsychol Rev 17(3):337–345

    PubMed  Google Scholar 

  • Garavan H, Pankiewicz J, Bloom A, Cho JK, Sperry L, Ross TJ et al (2000) Cue-induced cocaine craving: neuroanatomical specificity for drug users and drug stimuli. Am J Psychiatry 157(11):1789–1798

    PubMed  CAS  Google Scholar 

  • Gawin FH (1991) Cocaine addiction: psychology and neurophysiology. Science 251(5001):1580–1586

    PubMed  CAS  Google Scholar 

  • Glautier S, Drummond DC (1994) Alcohol dependence and cue reactivity. J Stud Alcohol 55(2):224–229

    PubMed  CAS  Google Scholar 

  • Gold MS (1997) Cocaine (and crack): clinical aspects. In: Lowinson JH, Ruiz P, Millman RB, Langrod JG (eds) Substance abuse: a comprehensive textbook. Williams & Wilkins, Baltimore, pp 181–199

    Google Scholar 

  • Goldstein RZ, Volkow ND (2002) Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. Am J Psychiatry 159(10):1642–1652

    PubMed Central  PubMed  Google Scholar 

  • Goldstein RZ, Volkow ND (2011) Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nat Rev Neurosci 12(11):652–669

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Leskovjan AC, Hoff AL, Hitzemann R, Bashan F, Khalsa SS et al (2004) Severity of neuropsychological impairment in cocaine and alcohol addiction: association with metabolism in the prefrontal cortex. Neuropsychologia 42(11):1447–1458

    PubMed  Google Scholar 

  • Goldstein RZ, Cottone LA, Jia Z, Maloney T, Volkow ND, Squires NK (2006) The effect of graded monetary reward on cognitive event-related potentials and behavior in young healthy adults. Int J Psychophysiol 62(2):272–279

    PubMed Central  PubMed  Google Scholar 

  • Goldstein RZ, Alia-Klein N, Tomasi D, Zhang L, Cottone LA, Maloney T et al (2007a) Is decreased prefrontal cortical sensitivity to monetary reward associated with impaired motivation and self-control in cocaine addiction? Am J Psychiatry 164(1):43–51

    PubMed Central  PubMed  Google Scholar 

  • Goldstein RZ, Tomasi D, Alia-Klein N, Cottone LA, Zhang L, Telang F et al (2007b) Subjective sensitivity to monetary gradients is associated with frontolimbic activation to reward in cocaine abusers. Drug Alcohol Depend 87(2–3):233–240

    PubMed Central  PubMed  Google Scholar 

  • Goldstein RZ, Tomasi D, Alia-Klein N, Zhang L, Telang F, Volkow ND (2007c) The effect of practice on a sustained attention task in cocaine abusers. Neuroimage 35(1):194–206

    PubMed Central  PubMed  Google Scholar 

  • Goldstein RZ, Woicik PA, Lukasik T, Maloney T, Volkow ND (2007d) Drug fluency: a potential marker for cocaine use disorders. Drug Alcohol Depend 89(1):97–101

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Parvaz MA, Maloney T, Alia-Klein N, Woicik PA, Telang F et al (2008) Compromised sensitivity to monetary reward in current cocaine users: an ERP study. Psychophysiology 45(5):705–713

    PubMed Central  PubMed  Google Scholar 

  • Goldstein RZ, Alia-Klein N, Tomasi D, Carrillo JH, Maloney T, Woicik PA et al (2009a) Anterior cingulate cortex hypoactivations to an emotionally salient task in cocaine addiction. Proc Natl Acad Sci U S A 106(23):9453–9458

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Craig AD, Bechara A, Garavan H, Childress AR, Paulus MP et al (2009b) The neurocircuitry of impaired insight in drug addiction. Trends Cogn Sci 13(9):372–380

    PubMed Central  PubMed  Google Scholar 

  • Goldstein RZ, Tomasi D, Alia-Klein N, Carrillo JH, Maloney T, Woicik PA et al (2009c) Dopaminergic response to drug words in cocaine addiction. J Neurosci 29(18):6001–6006

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Woicik PA, Maloney T, Tomasi D, Alia-Klein N, Shan J et al (2010a) Oral methylphenidate normalizes cingulate activity in cocaine addiction during a salient cognitive task. Proc Natl Acad Sci U S A 107(38):16667–16672

    PubMed Central  PubMed  CAS  Google Scholar 

  • Goldstein RZ, Woicik PA, Moeller SJ, Telang F, Jayne M, Wong C, Volkow ND (2010b) Liking and wanting of drug and non-drug rewards in active cocaine users: the STRAP-R questionnaire. J Psychopharmacol 24(2):257–266

    Google Scholar 

  • Goldstein RZ, Moeller SJ, Volkow ND (2011) Cognitive disruptions in drug addiction: a focus on the prefrontal cortex, in neuroimaging in addiction Adinoff B, Stein EA (eds). John Wiley & Sons, Ltd: Chichester, UK

    Google Scholar 

  • Griffiths RR, Troisi JR, Silverman K, Mumford GK (1993) Multiple-choice procedure: an efficient approach for investigating drug reinforcement in humans. Behav Pharmacol 4(1):3–13

    PubMed  CAS  Google Scholar 

  • Griffiths RR, Holtzman SG, Daly JW, Hughes JR, Evans SM, Strain EC (1996) Caffeine: a model drug of abuse. NIDA Res Monogr 162:73–75

    PubMed  CAS  Google Scholar 

  • Grigson PS, Twining RC (2002) Cocaine-induced suppression of saccharin intake: a model of drug-induced devaluation of natural rewards. Behav Neurosci 116(2):321–333

    PubMed  CAS  Google Scholar 

  • Grusser SM, Wrase J, Klein S, Hermann D, Smolka MN, Ruf M et al (2004) Cue-induced activation of the striatum and medial prefrontal cortex is associated with subsequent relapse in abstinent alcoholics. Psychopharmacology (Berl) 175(3):296–302

    Google Scholar 

  • Hajcak G, Dunning JP, Foti D (2007) Neural response to emotional pictures in unaffected by concurrent task difficulty: an event-related potential study. Behav Neurosci 121(6):1156–1162

    PubMed  Google Scholar 

  • Hart CL, Haney M, Foltin RW, Fischman MW (2000) Alternative reinforcers differentially modify cocaine self-administration by humans. Behav Pharmacol 11(1):87–91

    PubMed  CAS  Google Scholar 

  • Heinz A, Wrase J, Kahnt T, Beck A, Bromand Z, Grusser SM et al (2007) Brain activation elicited by affectively positive stimuli is associated with a lower risk of relapse in detoxified alcoholic subjects. Alcohol Clin Exp Res 31(7):1138–1147

    PubMed  Google Scholar 

  • Hester R, Dixon V, Garavan H (2006) A consistent attentional bias for drug-related material in active cocaine users across word and picture versions of the emotional Stroop task. Drug Alcohol Depend 81:251–257

    PubMed  CAS  Google Scholar 

  • Hornak J, O’Doherty J, Bramham J, Rolls ET, Morris RG, Bullock PR et al (2004) Reward-related reversal learning after surgical excisions in orbito-frontal or dorsolateral prefrontal cortex in humans. J Cogn Neurosci 16(3):463–478

    PubMed  CAS  Google Scholar 

  • Kampman KM (2010) What’s new in the treatment of cocaine addiction? Curr Psychiatry Rep 12(5):441–447

    PubMed  Google Scholar 

  • Kim YT, Lee JJ, Song HJ, Kim JH, Kwon DH, Kim MN et al (2010) Alterations in cortical activity of male methamphetamine abusers performing an empathy task: fMRI study. Hum Psychopharmacol 25(1):63–70

    PubMed  CAS  Google Scholar 

  • Kirby KN, Petry NM (2004) Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99(4):461–471

    PubMed  Google Scholar 

  • Knutson B, Westdorp A, Kaiser E, Hommer D (2000) FMRI visualization of brain activity during a monetary incentive delay task. Neuroimage 12(1):20–27

    PubMed  CAS  Google Scholar 

  • Knutson B, Bjork JM, Fong GW, Hommer D, Mattay VS, Weinberger DR (2004) Amphetamine modulates human incentive processing. Neuron 43(2):261–269

    PubMed  CAS  Google Scholar 

  • Knutson B, Taylor J, Kaufman M, Peterson R, Glover G (2005) Distributed neural representation of expected value. J Neurosci 25(19):4806–4812

    PubMed  CAS  Google Scholar 

  • Konova AB, Moeller SJ, Tomasi D, Parvaz MA, Alia-Klein N, Volkow ND et al (2012) Structural and behavioral correlates of abnormal encoding of money value in the sensorimotor striatum in cocaine addiction. Eur J Neurosci 36(7):2979–2988

    PubMed Central  PubMed  Google Scholar 

  • Konova AB, Moeller SJ, Tomasi D, Volkow ND, Goldstein RZ (2013) Effects of methylphenidate on resting-state functional connectivity of the mesocorticolimbic dopamine pathways in cocaine addiction. JAMA Psychiatry 70(8):857–868

    Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242(4879):715–723

    PubMed  CAS  Google Scholar 

  • Koob GF, Le Moal M (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24(2):97–129

    PubMed  CAS  Google Scholar 

  • Kringelbach ML, O’Doherty J, Rolls ET, Andrews C (2003) Activation of the human orbitofrontal cortex to a liquid food stimulus is correlated with its subjective pleasantness. Cereb Cortex 13(10):1064–1071

    PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Rosenblatt W, Zea-Ponce Y, Zoghbi SS et al (1995) SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med 36(7):1182–1190

    PubMed  CAS  Google Scholar 

  • Lasagna L, Von Felsinger JM, Beecher HK (1955) Drug-induced mood changes in man. I. Observations on healthy subjects, chronically ill patients, and postaddicts. J Am Med Assoc 157(12):1006–1020

    PubMed  CAS  Google Scholar 

  • Lee JL, Milton AL, Everitt BJ (2006) Cue-induced cocaine seeking and relapse are reduced by disruption of drug memory reconsolidation. J Neurosci 26(22):5881–5887

    PubMed  CAS  Google Scholar 

  • Leyton M, Casey KF, Delaney JS, Kolivakis T, Benkelfat C (2005) Cocaine craving, euphoria, and self-administration: a preliminary study of the effect of catecholamine precursor depletion. Behav Neurosci 119(6):1619–1627

    PubMed  CAS  Google Scholar 

  • Lubman DI, Allen NB, Peters LA, Deakin JF (2008) Electrophysiological evidence that drug cues have greater salience than other affective stimuli in opiate addiction. J Psychopharmacol 22(8):836–842

    PubMed  CAS  Google Scholar 

  • Lubman DI, Yucel M, Kettle JW, Scaffidi A, Mackenzie T, Simmons JG et al (2009) Responsiveness to drug cues and natural rewards in opiate addiction: associations with later heroin use. Arch Gen Psychiatry 66(2):205–212

    PubMed  Google Scholar 

  • Margolin A, Avants SK, Kosten TR (1994) Cue-elicited cocaine craving and autogenic relaxation: association with treatment outcome. J Subst Abuse Treat 11(6):549–552

    PubMed  CAS  Google Scholar 

  • Martinez D, Narendran R, Foltin RW, Slifstein M, Hwang DR, Broft A et al (2007) Amphetamine-induced dopamine release: markedly blunted in cocaine dependence and predictive of the choice to self-administer cocaine. Am J Psychiatry 164(4):622–629

    PubMed  Google Scholar 

  • Mattson BJ, Williams S, Rosenblatt JS, Morrell JI (2001) Comparison of two positive reinforcing stimuli: pups and cocaine throughout the postpartum period. Behav Neurosci 115(3):683–694

    PubMed  CAS  Google Scholar 

  • McCabe JA, Tobler PN, Schultz W, Dickinson A, Lupson V, Fletcher PC (2009) Appetitive and aversive taste conditioning in a computer game influences real-world decision making and subsequent activation in insular cortex. J Neurosci 29(4):1046–1051

    PubMed  CAS  Google Scholar 

  • McClure SM, Daw ND, Montague PR (2003) A computational substrate for incentive salience. Trends Neurosci 26(8):423–428

    PubMed  CAS  Google Scholar 

  • McClure SM, York MK, Montague PR (2004) The neural substrates of reward processing in humans: the modern role of FMRI. Neuroscientist 10(3):260–268

    PubMed  Google Scholar 

  • Moeller SJ, Maloney T, Parvaz MA, Dunning JP, Alia-Klein N, Woicik PA et al (2009) Enhanced choice for viewing cocaine pictures in cocaine addiction. Biol Psychiatry 66(2):169–176

    PubMed Central  PubMed  Google Scholar 

  • Moeller SJ, Maloney T, Parvaz MA, Alia-Klein N, Woicik PA, Telang F et al (2010) Impaired insight in cocaine addiction: laboratory evidence and effects on cocaine-seeking behaviour. Brain 133(Pt 5):1484–1493

    PubMed Central  PubMed  Google Scholar 

  • Moeller SJ, Honorio J, Tomasi D, Parvaz MA, Woicik PA, Volkow ND, Goldstein RZ (2012a) Methylphenidate enhances executive function and optimizes prefrontal function in both health and cocaine addiction. Cereb Cortex. doi:10.1093/cercor/bhs345

  • Moeller SJ, Hajcak G, Parvaz MA, Dunning JP, Volkow ND, Goldstein RZ (2012b) Psychophysiological prediction of choice: relevance to insight and drug addiction. Brain 135:3481–3494

    PubMed Central  PubMed  Google Scholar 

  • Moeller SJ, Tomasi D, Honorio J, Volkow ND, Goldstein RZ (2012c) Dopaminergic involvement during mental fatigue in health and cocaine addiction. Trans Psychiatry 2:e176

    CAS  Google Scholar 

  • Moeller SJ, Beebe-Wang N, Woicik PA, Konova AB, Maloney T, Goldstein RZ (2013) Choice to view cocaine images predicts concurrent and prospective drug use in cocaine addiction. Drug Alcohol Depend 130(1–3):178–185

    Google Scholar 

  • Moffitt TE, Arseneault L, Belsky D, Dickson N, Hancox RJ, Harrington H et al (2011) A gradient of childhood self-control predicts health, wealth, and public safety. Proc Natl Acad Sci U S A 108(7):2693–2698

    PubMed Central  PubMed  CAS  Google Scholar 

  • Mogg K, Bradley BP (2002) Selective processing of smoking-related cues in smokers: manipulation of deprivation level and comparison of three measures of processing bias. J Psychopharmacol 16:385–392

    PubMed  Google Scholar 

  • Monterosso JR, Ainslie G, Xu J, Cordova X, Domier CP, London ED (2007) Frontoparietal cortical activity of methamphetamine-dependent and comparison subjects performing a delay discounting task. Hum Brain Mapp 28(5):383–393

    PubMed  Google Scholar 

  • Nader MA, Czoty PW (2005) PET imaging of dopamine D2 receptors in monkey models of cocaine abuse: genetic predisposition versus environmental modulation. Am J Psychiatry 162(8):1473–1482

    PubMed  Google Scholar 

  • Nader MA, Morgan D, Gage HD, Nader SH, Calhoun TL, Buchheimer N et al (2006) PET imaging of dopamine D2 receptors during chronic cocaine self-administration in monkeys. Nat Neurosci 9(8):1050–1056

    PubMed  CAS  Google Scholar 

  • Nocjar C, Panksepp J (2002) Chronic intermittent amphetamine pretreatment enhances future appetitive behavior for drug- and natural-reward: interaction with environmental variables. Behav Brain Res 128(2):189–203

    PubMed  CAS  Google Scholar 

  • O’Doherty J, Kringelbach ML, Rolls ET, Hornak J, Andrews C (2001) Abstract reward and punishment representations in the human orbitofrontal cortex. Nat Neurosci 4(1):95–102

    PubMed  Google Scholar 

  • Parvaz MA, Konova AB, Tomasi D, Volkow ND, Goldstein RZ (2011) Structural integrity of the prefrontal cortex modulates electrocortical sensitivity to reward. J Cogn Neurosci 24(7):1560–1570

    PubMed  Google Scholar 

  • Parvaz MA, Maloney T, Moeller SJ, Woicik PA, Alia-Klein N, Telang F et al (2012) Sensitivity to monetary reward is most severely compromised in recently abstaining cocaine addicted individuals: a cross-sectional ERP study. Psychiatry Res 203(1):75–82

    PubMed Central  PubMed  Google Scholar 

  • Pontieri FE, Tanda G, Orzi F, Di Chiara G (1996) Effects of nicotine on the nucleus accumbens and similarity to those of addictive drugs. Nature 382(6588):255–257

    PubMed  CAS  Google Scholar 

  • Pontieri FE, Passarelli F, Calo L, Caronti B (1998) Functional correlates of nicotine administration: similarity with drugs of abuse. J Mol Med 76(3–4):193–201

    PubMed  CAS  Google Scholar 

  • Redish AD (2004) Addiction as a computational process gone awry. Science 306(5703): 1944–1947

    PubMed  CAS  Google Scholar 

  • Reichel CM, Bevins RA (2008) Competition between the conditioned rewarding effects of cocaine and novelty. Behav Neurosci 122(1):140–150

    PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2001) Incentive-sensitization and addiction. Addiction 96(1):103–114

    PubMed  CAS  Google Scholar 

  • Robinson TE, Berridge KC (2003) Addiction. Annu Rev Psychol 54:25–53

    PubMed  Google Scholar 

  • Roesch MR, Taylor AR, Schoenbaum G (2006) Encoding of time-discounted rewards in orbitofrontal cortex is independent of value representation. Neuron 51(4):509–520

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rolls ET (2000) Precis of the brain and emotion. Behav Brain Sci 23(2):177–191; discussion 192–233

    PubMed  CAS  Google Scholar 

  • Russell M (1976) What is dependence? In: Edwards G (ed) Drugs and drug dependence. Lexington Books, Lexington, pp 182–187

    Google Scholar 

  • Schmidt L, d’Arc BF, Lafargue G, Galanaud D, Czernecki V, Grabli D (2008) Disconnecting force from money: effects of basal ganglia damage on incentive motivation. Brain 131(Pt 5):1303–1310

    PubMed  Google Scholar 

  • Schott BH, Niehaus L, Wittmann BC, Schutze H, Seidenbecher CI, Heinze HJ et al (2007) Ageing and early-stage Parkinson’s disease affect separable neural mechanisms of mesolimbic reward processing. Brain 130(Pt 9):2412–2424

    PubMed  Google Scholar 

  • Schultz W (2006) Behavioral theories and the neurophysiology of reward. Annu Rev Psychol 57:87–115

    PubMed  Google Scholar 

  • Schultz W, Tremblay L, Hollerman JR (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cereb Cortex 10(3):272–284

    PubMed  CAS  Google Scholar 

  • Sinha R, Fuse T, Aubin LR, O’Malley SS (2000) Psychological stress, drug-related cues and cocaine craving. Psychopharmacology (Berl) 152(2):140–148

    CAS  Google Scholar 

  • Solomon RL, Corbit JD (1973) An opponent-process theory of motivation. II. Cigarette addiction. J Abnorm Psychol 81(2):158–171

    PubMed  CAS  Google Scholar 

  • Solomon RL, Corbit JD (1974) An opponent-process theory of motivation. I. Temporal dynamics of affect. Psychol Rev 81(2):119–145

    PubMed  CAS  Google Scholar 

  • Tarter RE, Kirisci L, Mezzich A, Cornelius JR, Pajer K, Vanyukov M et al (2003) Neurobehavioral disinhibition in childhood predicts early age at onset of substance use disorder. Am J Psychiatry 160(6):1078–1085

    PubMed  Google Scholar 

  • Taylor JR, Horger BA (1999) Enhanced responding for conditioned reward produced by intra-accumbens amphetamine is potentiated after cocaine sensitization. Psychopharmacology (Berl) 142(1):31–40

    CAS  Google Scholar 

  • Tobler PN, Fiorillo CD, Schultz W (2005) Adaptive coding of reward value by dopamine neurons. Science 307(5715):1642–1645

    PubMed  CAS  Google Scholar 

  • Tremblay L, Schultz W (1999) Relative reward preference in primate orbitofrontal cortex. Nature 398(6729):704–708

    PubMed  CAS  Google Scholar 

  • Verdejo-Garcia A, Bechara A, Recknor EC, Perez-Garcia M (2006) Executive dysfunction in substance dependent individuals during drug use and abstinence: an examination of the behavioral, cognitive, and emotional correlates of addiction. J Int Neuropsychol Soc 12:405–415

    PubMed  Google Scholar 

  • Vinogradov S, Fisher M, de Villers-Sidani E (2011) Cognitive training for impaired neural systems in neuropsychiatric illness. Neuropsychopharmacology 37(1):43–76

    PubMed Central  PubMed  Google Scholar 

  • Volkow ND, Fowler JS, Wolf AP, Schlyer D, Shiue CY, Alpert R et al (1990) Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 147(6):719–724

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Hitzemann R, Logan J, Schlyer DJ et al (1993) Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 14(2):169–177

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fischman MW, Foltin RW, Fowler JS, Abumrad NN et al (1997a) Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 386(6627):827–830

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Gatley SJ, Hitzemann R et al (1997b) Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 386(6627):830–833

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Ding YS, Gatley SJ (2002a) Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol 12(6):557–566

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Logan J, Jayne M, Franceschi D et al (2002b) “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse 44(3):175–180

    PubMed  CAS  Google Scholar 

  • Volkow ND, Fowler JS, Wang GJ, Swanson JM (2004a) Dopamine in drug abuse and addiction: results from imaging studies and treatment implications. Mol Psychiatry 9(6):557–569

    PubMed  CAS  Google Scholar 

  • Volkow ND, Wang GJ, Fowler JS, Telang F, Maynard L, Logan J et al (2004b) Evidence that methylphenidate enhances the saliency of a mathematical task by increasing dopamine in the human brain. Am J Psychiatry 161(7):1173–1180

    PubMed  Google Scholar 

  • Volkow ND, Wang GJ, Begleiter H, Porjesz B, Fowler JS, Telang F et al (2006) High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Arch Gen Psychiatry 63(9):999–1008

    PubMed  CAS  Google Scholar 

  • Von Felsinger JM, Lasagna L, Beecher HK (1955) Drug-induced mood changes in man. II. Personality and reactions to drugs. J Am Med Assoc 157(13):1113–1119

    Google Scholar 

  • Washton AM, Stone-Washton N (1993) Outpatient treatment of cocaine and crack addiction: a clinical perspective. NIDA Res Monogr 135:15–30

    PubMed  CAS  Google Scholar 

  • Watanabe M (1989) The appropriateness of behavioral responses coded in post-trial activity of primate prefrontal units. Neurosci Lett 101(1):113–117

    PubMed  CAS  Google Scholar 

  • Woicik PA, Moeller SJ, Alia-Klein N, Maloney T, Lukasik TM, Yeliosof O et al (2009) The neuropsychology of cocaine addiction: recent cocaine use masks impairment. Neuropsychopharmacology 34(5):1112–1122

    Google Scholar 

  • Woicik PA, Urban C, Alia-Klein N, Henry A, Maloney T, Telang F et al (2011) A pattern of perseveration in cocaine addiction may reveal neurocognitive processes implicit in the Wisconsin Card Sorting Test. Neuropsychologia 49(7):1660–1669

    PubMed Central  PubMed  Google Scholar 

  • Woolverton WL, Anderson KG (2006) Effects of delay to reinforcement on the choice between cocaine and food in rhesus monkeys. Psychopharmacology (Berl) 186(1):99–106

    CAS  Google Scholar 

  • Wrase J, Schlagenhauf F, Kienast T, Wustenberg T, Bermpohl F, Kahnt T et al (2007) Dysfunction of reward processing correlates with alcohol craving in detoxified alcoholics. Neuroimage 35(2):787–794

    PubMed  Google Scholar 

  • Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21(19):7831–7840

    PubMed  CAS  Google Scholar 

  • Yalachkov Y, Kaiser J, Naumer MJ (2009) Brain regions related to tool use and action knowledge reflect nicotine dependence. J Neurosci 29(15):4922–4929

    PubMed  CAS  Google Scholar 

  • Yeung N, Sanfey AG (2004) Independent coding of reward magnitude and valence in the human brain. J Neurosci 24(28):6258–6264

    PubMed  CAS  Google Scholar 

  • Zijlstra F, Veltman DJ, Booij J, van den Brink W, Franken IH (2009) Neurobiological substrates of cue-elicited craving and anhedonia in recently abstinent opioid-dependent males. Drug Alcohol Depend 99(1–3):183–192

    PubMed  Google Scholar 

  • Zombeck JA, Chen G-T, Johnson ZV, Rosenberg DM, Craig AB, Rhodes JS (2008) Neuroanatomical specificity of conditioned responses to cocaine versus food in mice. Physiol Behav 93(3):637–650

    PubMed  CAS  Google Scholar 

Download references

Time dedicated to working on this chapter was supported by grants from the National Institute on Drug Abuse (1R01DA023579).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rita Z. Goldstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Goldstein, R.Z. (2014). Abnormalities in Reward Processing in Drug Addiction: Lessons from Neuropsychology and Neuroimaging Studies. In: Dierckx, R., Otte, A., de Vries, E., van Waarde, A., den Boer, J. (eds) PET and SPECT in Psychiatry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40384-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40384-2_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40383-5

  • Online ISBN: 978-3-642-40384-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics