An Improvement of Subject Reacquisition by Reasoning and Revision

  • Jianbing Ma
  • Weiru Liu
  • Paul Miller
  • Fabian Campbell-West
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8078)


CCTV systems are broadly deployed in the present world. Despite this, the impact on anti-social and criminal behaviour has been minimal. Subject reacquisition is a fundamental task to ensure in-time reaction for intelligent surveillance. However, traditional reacquisition based on face recognition is not scalable, hence in this paper we use reasoning techniques to reduce the computational effort which deploys the time-of-flight information between interested zones such as airport security corridors. Also, to improve accuracy of reacquisition, we introduce the idea of revision as a method of post-processing. We demonstrate the significance and usefulness of our framework with an experiment which shows much less computational effort and better accuracy.


Subject Reacquisition Time-of-Flight CCTV Surveillance Event Reasoning Revision 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arth, C., Leistner, C., Bischof, H.: Object reacquisition and tracking in large-scale smart camera networks. In: Procs. of 1st ACM/IEEE Distributed Smart Cameras, ICDSC 2007, pp. 156–163 (2007)Google Scholar
  2. 2.
    Campbell-West, F., Wang, H., Miller, P.: Where is it? object reacquisition in surveillance video. In: Procs. of Machine Vision and Image Processing, IMVIP 2008, pp. 182–187 (2008)Google Scholar
  3. 3.
    Dempster, A.P.: A generalization of bayesian inference. J. Roy. Statist. Soc. Series B 30, 205–247 (1968)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Jiang, X., Fan, P., Ravyse, I., Sahli, H., Huang, J., Zhao, R., Zhang, Y.: Perception-based lighting adjustment of image sequences. In: Zha, H., Taniguchi, R.-i., Maybank, S. (eds.) ACCV 2009, Part III. LNCS, vol. 5996, pp. 118–129. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Liu, W., Miller, P., Ma, J., Yan, W.: Challenges of distributed intelligent surveillance system with heterogenous information. In: Procs. of QRASA, Pasadena, California, pp. 69–74 (2009)Google Scholar
  6. 6. face recognitionGoogle Scholar
  7. 7.
    Ma, J.: Qualitative approach to bayesian networks with multiple causes. IEEE Transactions on Systems, Man, and Cybernetics, Part A 42(2), 382–391 (2012)CrossRefGoogle Scholar
  8. 8.
    Ma, J., Benferhat, S., Liu, W.: Revising partial pre-orders with partial pre-orders: A unit-based revision framework (2012)Google Scholar
  9. 9.
    Ma, J., Benferhat, S., Liu, W.: Revision over partial pre-orders: A postulational study. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 219–232. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Ma, J., Liu, W.: A general model for epistemic state revision using plausibility measures. In: Procs. of ECAI, pp. 356–360 (2008)Google Scholar
  11. 11.
    Ma, J., Liu, W.: Modeling belief change on epistemic states. In: Procs. of FLAIRS (2009)Google Scholar
  12. 12.
    Ma, J., Liu, W.: A framework for managing uncertain inputs: An axiomization of rewarding. Int. J. Approx. Reasoning 52(7), 917–934 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ma, J., Liu, W., Benferhat, S.: A belief revision framework for revising epistemic states with partial epistemic states. In: Procs. of AAAI, pp. 333–338 (2010)Google Scholar
  14. 14.
    Ma, J., Liu, W., Dubois, D., Prade, H.: Revision rules in the theory of evidence. In: Procs. of ICTAI, pp. 295–302 (2010)Google Scholar
  15. 15.
    Ma, J., Liu, W., Dubois, D., Prade, H.: Bridging Jeffrey’s rule, AGM revision and Dempster conditioning in the theory of evidence. International Journal on Artificial Intelligence Tools 20(4), 691–720 (2011)CrossRefGoogle Scholar
  16. 16.
    Ma, J., Liu, W., Hunter, A.: Inducing probability distributions from knowledge bases with (in)dependence relations. In: Procs. of AAAI, pp. 339–344 (2010)Google Scholar
  17. 17.
    Ma, J., Liu, W., Hunter, A.: Modeling and reasoning with qualitative comparative clinical knowledge. Int. J. Intell. Syst. 26(1), 25–46 (2011)CrossRefzbMATHGoogle Scholar
  18. 18.
    Ma, J., Liu, W., Miller, P.: Event modelling and reasoning with uncertain information for distributed sensor networks. In: Deshpande, A., Hunter, A. (eds.) SUM 2010. LNCS, vol. 6379, pp. 236–249. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. 19.
    Ma, J., Liu, W., Miller, P.: Belief change with noisy sensing in the situation calculus. In: Procs. of UAI (2011)Google Scholar
  20. 20.
    Ma, J., Liu, W., Miller, P.: Handling sequential observations in intelligent surveillance. In: Benferhat, S., Grant, J. (eds.) SUM 2011. LNCS, vol. 6929, pp. 547–560. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  21. 21.
    Ma, J., Liu, W., Miller, P.: A characteristic function approach to inconsistency measures for knowledge bases. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 473–485. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  22. 22.
    Ma, J., Liu, W., Miller, P.: Evidential fusion for gender profiling. In: Hüllermeier, E., Link, S., Fober, T., Seeger, B. (eds.) SUM 2012. LNCS, vol. 7520, pp. 514–524. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  23. 23.
    Ma, J., Liu, W., Miller, P.: An evidential improvement for gender profiling. In: Denœux, T., Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC, vol. 164, pp. 29–36. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  24. 24.
    Ma, J., Liu, W., Miller, P., Yan, W.: Event composition with imperfect information for bus surveillance. In: Procs. of AVSS, pp. 382–387. IEEE Press (2009)Google Scholar
  25. 25.
    Miller, P., Liu, W., Fowler, F., Zhou, H., Shen, J., Ma, J., Zhang, J., Yan, W., McLaughlin, K., Sezer, S.: Intelligent sensor information system for public transport: To safely go. In: Procs. of AVSS (2010)Google Scholar
  26. 26.
    Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)Google Scholar
  27. 27.
    Viola, P., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Procs. of IEEE CVPR, pp. 511–518 (2001)Google Scholar
  28. 28.
    Walter, M.R., Friedman, Y., Antone, M., Teller, S.: Appearance-based object reacquisition for mobile manipulation. In: Procs. of IEEE Computer Vision and Pattern Recognition Workshops, CVPRW, pp. 1–8 (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jianbing Ma
    • 1
    • 2
  • Weiru Liu
    • 2
  • Paul Miller
    • 2
  • Fabian Campbell-West
    • 2
  1. 1.School of Electronics, Electrical Engineering and Computer ScienceQueen’s University BelfastBelfastUK
  2. 2.School of Design, Engineering and ComputingBournemouth UniversityUK

Personalised recommendations