An Accurate Probabilistic Reliability Model for Silicon PUFs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8086)


The power of an accurate model for describing a physical process or designing a physical system is beyond doubt. The currently used reliability model for physically unclonable functions (PUFs) assumes an equally likely error for every evaluation of every PUF response bit. This limits an accurate description since experiments show that certain responses are more error-prone than others, but this fixed error rate model only captures average case behavior. We introduce a new PUF reliability model taking this observed heterogeneous nature of PUF cells into account. An extensive experimental validation demonstrates the new predicted distributions describe the empirically observed data statistics almost perfectly, even considering sensitivity to operational temperature. This allows studying PUF reliability behavior in full detail, including average and worst case probabilities, and is an invaluable tool for designing more efficient and better adapted PUFs and PUF-based systems.


  1. 1.
    Gassend, B., Clarke, D., van Dijk, M., Devadas, S.: Silicon Physical Random Functions. In: ACM Conference on Computer and Communications Security (ACM CCS), pp. 148–160 (2002)Google Scholar
  2. 2.
    Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    NXP: PUF Physical Unclonable Functions: Protecting next-generation Smart Card ICs with SRAM-based PUFs (February 2013),
  4. 4.
    Microsemi: SmartFusion2 System-on-Chip FPGAs Product Brief (February 2013),
  5. 5.
    Suh, G.E., Devadas, S.: Physical unclonable functions for device authentication and secret key generation. In: Design Automation Conference (DAC), pp. 9–14 (2007)Google Scholar
  6. 6.
    Bösch, C., Guajardo, J., Sadeghi, A.-R., Shokrollahi, J., Tuyls, P.: Efficient Helper Data Key Extractor on FPGAs. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 181–197. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Maiti, A., Schaumont, P.: Improved Ring Oscillator PUF: An FPGA-friendly Secure Primitive. IACR Journal of Cryptology 24, 375–397 (2011)MathSciNetCrossRefGoogle Scholar
  8. 8.
    van der Leest, V., Preneel, B., van der Sluis, E.: Soft Decision Error Correction for Compact Memory-Based PUFs Using a Single Enrollment. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 268–282. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  9. 9.
    Maes, R., Van Herrewege, A., Verbauwhede, I.: PUFKY: A Fully Functional PUF-Based Cryptographic Key Generator. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 302–319. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Suzuki, D., Shimizu, K.: The Glitch PUF: A New Delay-PUF Architecture Exploiting Glitch Shapes. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 366–382. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  11. 11.
    Bhargava, M., Cakir, C., Mai, K.: Attack resistant sense amplifier based PUFs (SA-PUF) with deterministic and controllable reliability of PUF responses. In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 106–111 (2010)Google Scholar
  12. 12.
    Chen, Q., Csaba, G., Lugli, P., Schlichtmann, U., Ruhrmair, U.: The Bistable Ring PUF: A new architecture for strong Physical Unclonable Functions. In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 134–141 (2011)Google Scholar
  13. 13.
    Maes, R., Tuyls, P., Verbauwhede, I.: Soft Decision Helper Data Algorithm for SRAM PUFs. In: IEEE Symposium on Information Theory (ISIT), pp. 2101–2105 (2009)Google Scholar
  14. 14.
    Simons, P., van der Sluis, E., van der Leest, V.: Buskeeper PUFs, a promising alternative to D Flip-Flop PUFs. In: IEEE International Symposium on Hardware-Oriented Security and Trust (HOST), pp. 7–12 (2012)Google Scholar
  15. 15.
    van der Leest, V., Schrijen, G.J., Handschuh, H., Tuyls, P.: Hardware intrinsic security from D flip-flops. In: ACM Workshop on Scalable Trusted Computing (ACM STC), pp. 53–62 (2010)Google Scholar
  16. 16.
    Lee, J.W., Lim, D., Gassend, B., Suh, G.E., van Dijk, M., Devadas, S.: A technique to build a secret key in integrated circuits for identification and authentication application. In: Symposium on VLSI Circuits, pp. 176–159 (2004)Google Scholar
  17. 17.
    Maes, R., Verbauwhede, I.: Physically Unclonable Functions: A Study on the State of the Art and Future Research Directions. In: Sadeghi, A.R., Naccache, D. (eds.) Towards Hardware-Intrinsic Security. Information Security and Cryptography, pp. 3–37. Springer (2010)Google Scholar
  18. 18.
    Katzenbeisser, S., Kocabaş, Ü., Rožić, V., Sadeghi, A.-R., Verbauwhede, I., Wachsmann, C.: PUFs: Myth, Fact or Busted? A Security Evaluation of Physically Unclonable Functions (PUFs) Cast in Silicon. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 283–301. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    (EU FP7-ICT 238811): UNIQUE Project - Foundations for Forgery-Resistant Security Hardware,
  20. 20.
    Maes, R., Rozic, V., Verbauwhede, I., Koeberl, P., van der Sluis, E., van der Leest, V.: Experimental evaluation of Physically Unclonable Functions in 65 nm CMOS. In: European Solid-State Circuits Conference (ESSCIRC), pp. 486–489 (2012)Google Scholar
  21. 21.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM Journal on Computing 38(1), 97–139 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Maes, R., Tuyls, P., Verbauwhede, I.: Low-Overhead Implementation of a Soft Decision Helper Data Algorithm for SRAM PUFs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 332–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Fernandez, M., Williams, S.: Closed-Form Expression for the Poisson-Binomial Probability Density Function. IEEE Transactions on Aerospace and Electronic Systems 46(2), 803–817 (2010)CrossRefGoogle Scholar

Copyright information

© International Association for Cryptologic Research 2013

Authors and Affiliations

  1. 1.Intrinsic-IDEindhovenThe Netherlands

Personalised recommendations