Skip to main content

Spatial Panel Data Models

  • Chapter
  • First Online:
Spatial Econometrics

Part of the book series: SpringerBriefs in Regional Science ((BRIEFSREGION))

Abstract

This chapter provides a survey of the specification and estimation of spatial panel data models. Five panel data models commonly used in applied research are considered: the fixed effects model, the random effects model, the fixed coefficients model, the random coefficients model, and the multilevel model. Today a (spatial) econometric researcher has the choice of many models. First, he should ask himself whether or not, and, if so, which type of spatial interaction effects should be accounted for. Second, he should ask himself whether or not spatial-specific and/or time-specific effects should be accounted for and, if so, whether they should be treated as fixed or as random effects. A selection framework is demonstrated to determine which of the first two types of spatial panel data models considered in this chapter best describes the data. The well-known Baltagi and Li (2004) panel dataset, explaining cigarette demand for 46 US states over the period 1963 to 1992, is used to illustrate this framework in an empirical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Baltagi et al. (2003) are the first to consider the testing of spatial interaction effects in a spatial panel data model. They derive a joint LM test which tests for spatial error autocorrelation and spatial random effects, as well as two conditional tests which test for one of these extensions assuming the presence of the other.

  2. 2.

    \( \phi = 1 \) implies \( \sigma_{\mu}^{2} = 0 \), since \( \sigma_{\mu}^{2} \) may be calculated from \( \phi \) by \( \sigma_{\mu}^{2} = \frac{{1 - \phi^{2}}}{{\phi^{2}}}\frac{{\sigma^{2}}}{T} \).

  3. 3.

    Note that \( \varphi = {{\sigma_{\mu}^{2}} \mathord{\left/{\vphantom {{\sigma_{\mu}^{2}} {\sigma^{2}}}} \right. \kern-0pt} {\sigma^{2}}} \) is different from \( \phi \) in the non-spatial random effects model and in the random effects spatial lag model.

  4. 4.

    Note that the matrix Z 0 in Baltagi et al. (2007, pp. 39–40) has been replaced by \( \varvec{Z}_{0} = \left({T\sigma_{\mu}^{2} \varvec{I}_{N} + \sigma^{2} \left({\varvec{B}^{'} \varvec{B}} \right)^{- 1}} \right)^{- 1} =\, \frac{1}{{\sigma^{2}}}\left({T\varphi \varvec{I}_{N} + (\varvec{B}^{'} \varvec{B})^{- 1}} \right)^{- 1} =\, \frac{1}{{\sigma^{2}}}\varvec{V}^{- 1} \).

  5. 5.

    This remark through Balestra and Nerlove is striking especially since they are the devisers of the random effects model (Balestra and Nerlove 1966).

  6. 6.

    Mutl and Pfaffermayr (2011) derive the Hausman test when the fixed and random effects models are estimated by 2SLS instead of ML.

  7. 7.

    Software programs, such as Spacestat and Geoda, have built-in routines that automatically report the results of these tests. Matlab routines have been made available at http://oak.cats.ohiou.edu/~lacombe/research.html by Donald Lacombe and at www.regroningen.nl by Paul Elhorst.

  8. 8.

    See the routine “sar” posted at LeSage's website <www.spatial-econometrics.com>.

  9. 9.

    Note that the test results satisfy the condition that LM spatial lag + robust LM spatial error = LM spatial error + robust LM spatial lag (Anselin et al. 1996).

  10. 10.

    These tests are based on the log-likelihood function values of the different models. Table 3.2 shows that these values are positive, even though the log-likelihood functions only contain terms with a minus sign. However, since σ2 < 1, we have –log(σ2) > 0. Furthermore, since this positive term dominates the negative terms in the log-likelihood function, we eventually have LogL > 0.

  11. 11.

    One application of this model in the literature is of Sampson et al. (1999), but this paper does not describe the estimation procedure in detail.

  12. 12.

    Bowden and Turkington start from the regression equation \( \varvec{Y} = \varvec{X\beta} +\varvec{\mu} \), where \( {\text{E}}\left({\varvec{\mu \mu}^{\text{T}}} \right) =\varvec{\Upomega} \), and some of the X variables are endogenous. Let Z denote the set of instrumental variables. Then, the GLS analog instrumental variables estimator is \( \varvec{b} = \left({\varvec{X}^{pT}\varvec{\Upomega}^{- 1} \varvec{X}^{P}} \right)^{- 1} \varvec{X}^{pT}\varvec{\Upomega}^{- 1} \varvec{Y} \), where \( \varvec{X}^{p} = \varvec{Z}(\varvec{Z}^{T}\varvec{\Upomega}^{- 1} \varvec{Z})^{- 1} \varvec{Z}^{T}\varvec{\Upomega}^{- 1} \varvec{X} \).

  13. 13.

    Applications based on the multilevel approach in regional economic research are Jones (1991), Ward and Dale (1992), Gould and Fieldhouse (1997), McCall (1998), Elhorst and Zeilstra (2007), Chasco and Lopez (2009), and Zeilstra and Elhorst (2012).

  14. 14.

    The linear expenditure system in its basic form is linear in the variables but nonlinear in the parameters. However, Barnum and Squire (1979) have shown that it can be rewritten in such a way that linear estimation techniques can still be used to estimate the parameters. Since the linear expenditure system extended to include interaction effects is also nonlinear in its variables, linear estimation techniques can no longer be used. The same applies to the techniques spelled out in Anselin (1988), which are partially linear.

References

  • Aaberge R, Langørgen A (2003) Fiscal and spending behavior of local governments: identification of price effects when prices are not observed. Public Choice 117:125–61

    Google Scholar 

  • Allers MA, Elhorst JP (2011) A simultaneous equations model of fiscal policy interactions. J Reg Sci 51:271–291

    Google Scholar 

  • Anselin L (1988) Spatial econometrics: Methods and models. Kluwer, Dordrecht

    Google Scholar 

  • Anselin L (2010) Thirty years of spatial econometrics. Papers Reg Sci 89:3–25

    Google Scholar 

  • Anselin L, Bera A (1998) Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah A, Giles D (eds) Handbook of applied economics statistics. Marcel Dekker, New York, pp 237–289

    Google Scholar 

  • Anselin L, Hudak S (1992) Spatial econometrics in practice: a review of software options. Reg Sci Urban Econ 22(3):509–536

    Google Scholar 

  • Anselin L, Bera AK, Florax R, Yoon MJ (1996) Simple diagnostic tests for spatial dependence. Reg Sci Urban Econ 26(1):77–104

    Google Scholar 

  • Anselin L, Le Gallo J, Jayet H (2006) Spatial panel econometrics. In: Matyas L, Sevestre P (eds) The econometrics of panel data, fundamentals and recent developments in theory and practice, 3rd edn. Kluwer, Dordrecht, pp 901–969

    Google Scholar 

  • Arbia G, Fingleton B (2008) New spatial econometric techniques and applications in regional science. Papers in Regional Science 87:311–317

    Google Scholar 

  • Arrelano M (2003) Panel data econometrics. Oxford University Press, Oxford

    Google Scholar 

  • Balestra P, Negassi S (1992) A random coefficient simultaneous equation system with an application to direct foreign investment by French firms. Empir Econ 17:205–220

    Google Scholar 

  • Balestra P, Nerlove M (1966) Pooling cross-section and time-series data in the estimation of a dynamic model: the demand for natural gas. Econometrica 34(3):585–612

    Google Scholar 

  • Baltagi BH (2005) Econometric analysis of panel data, 3rd edn. Wiley, Chichester

    Google Scholar 

  • Baltagi BH (2006) Random effects and spatial autocorrelation with equal weights. Econom Theory 22(5):973–984

    Google Scholar 

  • Baltagi BH, Bresson G (2011) Maximum likelihood estimation and Lagrange multiplier tests for panel seemingly unrelated regressions with spatial lag and spatial errors. An application to hedonic housing prices in Paris. J Urban Econ 69:24–42

    Google Scholar 

  • Baltagi BH, Levin D (1986) Estimating dynamic demand for cigarettes using panel data: the effects of bootlegging, taxation and advertising reconsidered. The Review of Economics and Statistics 48:148–155

    Google Scholar 

  • Baltagi BH, Levin D (1992) Cigarette taxation: raising revenues and reducing consumption. Struct Change Econ Dyn 3(2):321–335

    Google Scholar 

  • Baltagi BH, Li D (2004) Prediction in the panel data model with spatial autocorrelation. In: Anselin L, Florax RJGM, Rey SJ (eds) Advances in spatial econometrics: Methodology, tools, and applications. Springer, Berlin Heidelberg New York, pp 283–295

    Google Scholar 

  • Baltagi BH, Liu L (2011) Instrumental variable estimation of a spatial autoregressive panel model with random effects. Econ Lett 111:135–137

    Google Scholar 

  • Baltagi BH, Pirotte A (2010) Panel data inference under spatial dependence. Econ Model 27:1368–1381

    Google Scholar 

  • Baltagi BH, Pirotte A (2011) Seemingly unrelated regressions with spatial error components. Empir Econ 40:5–49

    Google Scholar 

  • Baltagi BH, Griffin JM, Xiong W (2000) To pool or not to pool: Homogeneous versus heterogeneous estimators applied to cigarette demand. Rev Econ Stat 82:117–126

    Google Scholar 

  • Baltagi BH, Song SH, Koh W (2003) Testing panel data models with spatial error correlation. J Econom 117(1):123–150

    Google Scholar 

  • Baltagi BH, Song SH, Jung BC, Koh W (2007) Testing for serial correlation, spatial autocorrelation and random effects using panel data. J Econom 140(1):5–51

    Google Scholar 

  • Baltagi BH, Egger P, Pfaffermayr M (2012) A generalized spatial panel data model with random effects. CESifo Working Paper Series No. 3930. Available at SSRN: http://ssrn.com/abstract=2145816

  • Barnum HW, Squire L (1979) An econometric application of the theory of the farm-household. J Dev Econ 6:79–102

    Google Scholar 

  • Beck N (2001) Time-series-cross-section data: What have we learned in the past few years? Ann Rev Polit Sci 4:271–293

    Google Scholar 

  • Beenstock M, Felsenstein D (2007) Spatial vector autoregressions. Spat Econ Anal 2(2):167–196

    Google Scholar 

  • Bowden RJ, Turkington DA (1984) Instrumental variables. Cambridge University Press, Cambridge

    Google Scholar 

  • Breusch TS (1987) Maximum likelihood estimation of random effects models. J Econom 36(3):383–389

    Google Scholar 

  • Brueckner JK (2003) Strategic interaction among local governments: An overview of empirical studies. International Regional Science Review 26(2):175–188

    Google Scholar 

  • Burridge P (1980) On the Cliff-Ord test for spatial autocorrelation. J R Stat Soc B 42:107–108

    Google Scholar 

  • Burridge P (1981) Testing for a common factor in a spatial autoregression model. Environ Plann A 13(7):795–400

    Google Scholar 

  • Chasco C, López AM (2009) Multilevel models: an application to the beta-convergence model. Région et Développement 30:35–58

    Google Scholar 

  • Corrado L, Fingleton B (2012) Where is the economics in spatial econometrics? J Reg Sci 52(2):210–239

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Debarsy N, Ertur C (2010) Testing for spatial autocorrelation in a fixed effects panel data model. Reg Sci Urban Econ 40:453–470

    Google Scholar 

  • Debarsy N, Ertur C, LeSage JP (2012) Interpreting dynamic space-time panel data models. Stat Methodol 9(1–2):158–171

    Google Scholar 

  • Driscoll JC, Kraay AC (1998) Consistent covariance matrix estimation with spatially dependent panel data. Rev Econ Stat 80:549–560

    Google Scholar 

  • Egger P, Pfaffermayr M (2004) Distance, trade and FDI: a Hausman-Taylor SUR approach. J Appl Econom 16:227–246

    Google Scholar 

  • Elhorst JP (2003) Specification and estimation of spatial panel data models. Int Reg Sci Rev 26(3):244–268

    Google Scholar 

  • Elhorst JP (2005) Unconditional maximum likelihood estimation of linear and log-linear dynamic models for spatial panels. Geograph Anal 37(1):62–83

    Google Scholar 

  • Elhorst JP (2008a) Serial and spatial autocorrelation. Econ Lett 100(3):422–424

    Google Scholar 

  • Elhorst JP (2008b) A spatiotemporal analysis of aggregate labour force behaviour by sex and age across the European Union. J Geogr Syst 10(2):167–190

    Google Scholar 

  • Elhorst JP (2010a) Applied spatial econometrics: raising the bar. Spat Econ Anal 5(1):9–28

    Google Scholar 

  • Elhorst JP (2010b) Spatial panel data models. In: Fischer MM, Getis A (eds) Handbook of applied spatial analysis. Springer, Berlin, pp 377–407

    Google Scholar 

  • Elhorst JP (2012) Matlab software for spatial panels. Int Reg Sci Rev. doi:10.1177/0160017612452429

    Google Scholar 

  • Elhorst JP (2013) Spatial panel models. In: Handbook of Regional Science, Ch. 82. Springer, Berlin (Forthcoming)

    Google Scholar 

  • Elhorst JP, Zeilstra AS (2007) Labour force participation rates at the regional and national levels of the European Union: an integrated analysis. Papers Reg Sci 86:525–549

    Google Scholar 

  • Frees EW (2004) Longitudinal and panel data. Cambridge, Cambridge University Press

    Google Scholar 

  • Fiebig DG (2001) Seemingly unrelated regression. In: Baltagi BH (ed) A companion to theoretical econometrics. Blackwell, Malden, pp 101–121

    Google Scholar 

  • Fingleton B (2001) Theoretical economic geography and spatial econometrics: dynamic perspectives. J Econ Geogr 1:201–225

    Google Scholar 

  • Fingleton B (2007) Multi-equation spatial econometric model, with application to EU manufacturing productivity growth. J Geogr Syst 9:119–144

    Google Scholar 

  • Florax RJGM, Folmer H, Rey SJ (2003) Specification searches in spatial econometrics: the relevance of Hendry’s methodology. Reg Sci Urban Econ 33(5):557–579

    Google Scholar 

  • Froot KA (1989) Consistent covariance matrix estimation with cross-sectional dependence and heteroskedasticity in financial data. J Fin Anal 24:333–355

    Google Scholar 

  • Goldstein H (1995) Multilevel statistical models, 2nd edn. Arnold (Oxford University Press), London

    Google Scholar 

  • Gould MI, Fieldhouse E (1997) Using the 1991 census SAR in a multilevel analysis of male unemployment. Environ Plan A 29:611–628

    Google Scholar 

  • Greene WH (2008) Econometric analysis, 6th edn. Pearson, New Jersey

    Google Scholar 

  • Griffith DA (1988) Advanced spatial statistics. Kluwer, Dordrecht

    Google Scholar 

  • Griffith DA, Lagona F (1998) On the quality of likelihood-based estimators in spatial autoregressive models when the data dependence structure is misspecified. J Stat Plan Infer 69(1):153–174

    Google Scholar 

  • Halleck Vega S, Elhorst JP (2012) On spatial econometric models, spillover effects, and W. University of Groningen, Working paper

    Google Scholar 

  • Hausman JA (1975) An instrumental variables approach to full information estimators for linear and certain nonlinear econometric models. Econometrica 43:727–738

    Google Scholar 

  • Hausman JA (1983) Specification and estimation of simultaneous equation models. In: Griliches Z, Intriligator MD (eds) Handbook of econometrics, vol 1. Elsevier, Amsterdam, pp 392–448

    Google Scholar 

  • Hayashi F (2000) Econometrics. Princeton University Press, Princeton

    Google Scholar 

  • Hepple LW (1997) Testing for spatial autocorrelation in simultaneous equation models. Computational, Environmental and Urban Systems 21(5):307–315

    Google Scholar 

  • Hsiao C (1996) Random coefficients models. In Mátyás L, Sevestre P (eds) The econometrics of panel data, 2nd revised edn. Kluwer, Dordrecht, pp 77–99

    Google Scholar 

  • Hsiao C (2003) Analysis of panel data, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Hsiao C, Tahmiscioglu AK (1997) A panel analysis of liquidity constraints and firm investment. J Am Stat Assoc 92:455–465

    Google Scholar 

  • Hunneman A, Bijmolt T, Elhorst JP (2007) Store location evaluation based on geographical consumer information. In: Paper presented at the marketing science conference, Singapore, 28–30 June 2007

    Google Scholar 

  • Jackman R, Papadachi J (1981) Local authority education expenditure in England and Wales: why standards differ and the impact of government grants. Public Choice 36:425–439

    Google Scholar 

  • Jenrich RI, Schluchter MD (1986) Unbalanced repeated-measures models with structured covariance matrices. Biometrics 42:805–820

    Google Scholar 

  • Jones K (1991) Multi-level models for geographical research. In: Concepts and techniques in modern geography, vol 54. University of East Anglia, Norwich.

    Google Scholar 

  • Kapoor M, Kelejian HH, Prucha IR (2007) Panel data models with spatially correlated error components. Journal of Econometrics 140(1):97–130

    Google Scholar 

  • Kapteyn A, Van de Geer S, Van de Stadt H, Wansbeek T (1997) Interdependent preferences: an econometric analysis. J Appl Econom 12:665–686

    Google Scholar 

  • Kelejian HH (1974) Random parameters in simultaneous equations framework: Identification and estimation. Econometrica 42:517–527

    Google Scholar 

  • Kelejian HH, Piras G (2012) Estimation of spatial models with endogenous weighting matrices and an application to a demand model for cigarettes. In: Paper presented at the 59th North American meetings of the RSAI, 2012, Ottawa, Canada

    Google Scholar 

  • Kelejian HH, Prucha IR (1998) A generalized spatial two stage least squares procedure for estimating a spatial autoregressive model with autoregressive disturbances. J Real Estate Fin Econ 17(1):99–121

    Google Scholar 

  • Kelejian HH, Prucha IR (2002) 2SLS and OLS in a spatial autoregressive model with equal spatial weights. Reg Sci Urban Econ 32(6):691–707

    Google Scholar 

  • Kelejian HH, Prucha IR (2004) Estimation of simultaneous systems of spatially interrelated cross-sectional equations. J Econom 118:27–50

    Google Scholar 

  • Kelejian HH, Prucha IR, Yuzefovich Y (2006) Estimation problems in models with spatial weighting matrices which have blocks of equal elements. J Reg Sci 46(3):507–515

    Google Scholar 

  • Lahiri SN (2003) Central limit theorems for weighted sums of a spatial process under a class of stochastic and fixed designs. Sankhya 65:356–388

    Google Scholar 

  • Lauridsen J, Bech M, López F, Maté M (2010) A spatiotemporal analysis of public pharmaceutical expenditures. Ann Reg Sci 44(2):299–314

    Google Scholar 

  • Lee LF (2003) Best spatial two-stage least squares estimators for a spatial autoregressive model with autoregressive disturbances. Econom Rev 22(4):307–335

    Google Scholar 

  • Lee LF (2004) Asymptotic distribution of quasi-maximum likelihood estimators for spatial autoregressive models. Econometrica 72(6):1899–1925

    Google Scholar 

  • Lee LF, Yu J (2010a) Estimation of spatial autoregressive panel data models with fixed effects. J Econom 154(2):165–185

    Google Scholar 

  • Lee LF, Yu J (2010b) Some recent developments in spatial panel data models. Reg Sci Urban Econ 40:255–271

    Google Scholar 

  • Lee LF, Yu J (2012a) QML estimation of spatial dynamic panel data models with time varying spatial weights matrices. Spat Econ Anal 7(1):31–74

    Google Scholar 

  • Lee LF, Yu J (2012b) Spatial panels: Random components versus fixed effects. Int Econ Rev 53:1369–1388

    Google Scholar 

  • Lee LF, Liu X, Lin X (2010) Specification and estimation of social interaction models with network structures. Econom J 13(2):145–176

    Google Scholar 

  • LeGallo J, Chasco C (2008) Spatial analysis of urban growth in Spain, 1900-2001. Empir Econ 34:59–80

    Google Scholar 

  • LeSage JP (1999) Spatial econometrics. www.spatial-econometrics.com/html/sbook.pdf

  • LeSage JP, Pace RK (2009) Introduction to spatial econometrics. CRC Press Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Lindstrom MJ, Bates DM (1988) Newton-Raphson and EM algorithms for linear mixed-effects model for repeated-measures data. J Am Stat Assoc 83:1014–1022

    Google Scholar 

  • Longford NT (1993) Random coefficient models. Clarendon Press, Oxford

    Google Scholar 

  • Magnus JR (1982) Multivariate error components analysis of linear and nonlinear regression models by maximum likelihood. J Econom 19(2):239–285

    Google Scholar 

  • McCall L (1998) Spatial routes to gender wage (in) equality: regional restructuring and wage differentials by gender and education. Econ Geogr 74:379–404

    Google Scholar 

  • Millo G, Piras G (2012) Splm: spatial panel data models in R. J Stat Softw 47(1):1–38

    Google Scholar 

  • Millo G (2013) Maximum likelihood estimation of spatially and serially correlated panels with random effects. Comput Stat Data Anal http://dx.doi.org/10.1016/j.bbr.2011.03.031, Forthcoming in print

  • Montes-Rojas GV (2010) Testing for random effects and serial correlation in spatial autoregressive model. Journal of Statistical Planning and Inference 140:1013–1020

    Google Scholar 

  • Mood AM, Graybill F, Boes DC (1974) Introduction to the theory of statistics, 3rd edn. McGraw-Hill, Tokyo

    Google Scholar 

  • Moscone F, Tosetti E, Knapp M (2007) SUR model with spatial effects: an application to mental health expenditure. Health Econ 16:1403–1408

    Google Scholar 

  • Mur J, Angulo A (2009) Model selection strategies in a spatial setting: Some additional results. Reg Sci Urban Econ 39:200–213

    Google Scholar 

  • Mur J, López F, Herrera M (2010) Testing for spatial effects in seemingly unrelated regressions. Spat Econ Anal 5(4):399–440

    Google Scholar 

  • Murphy KJ, Hofler RA (1984) Determinants of geographic unemployment rates: A selectively pooled-simultaneous model. Rev Econ Stat 66:216–223

    Google Scholar 

  • Mutl J, Pfaffermayr M (2011) The Hausman test in a Cliff and Ord panel model. The Econometrics Journal 14:48–76

    Google Scholar 

  • Nerlove M, Balestra P (1996) Formulation and estimation of econometric models for panel data. In Mátyás L, Sevestre P (eds) The econometrics of panel data, 2nd revised edn. Kluwer, Dordrecht, pp 3–22

    Google Scholar 

  • Pace RK, Barry R (1997) Quick computation of spatial autoregressive estimators. Geographical Analysis 29(3):232–246

    Google Scholar 

  • Parent O, LeSage JP (2010) A spatial dynamic panel model with random effects applied to commuting times. Transp Res Part B 44:633–645

    Google Scholar 

  • Parent O, LeSage JP (2011) A space-time filter for panel data models containing random effects. Comput Stat Data Anal 55:475–490

    Google Scholar 

  • Pfaffermayr M (2009) Maximum likelihood estimation of a general unbalanced spatial random effects model: a Monte Carlo study. Spat Econ Anal 4(4):467–483

    Google Scholar 

  • Pollak RA, Wales TJ (1981) Demographic variables in demand analysis. Econometrica 49:1533–1551

    Google Scholar 

  • Rey S, Montouri B (1999) US regional income convergence: a spatial econometrics perspective. Reg Stud 33:143–156

    Google Scholar 

  • Sampson RJ, Morenoff JD, Earles F (1999) Beyond social capital: spatial dynamics of collective efficacy for children. American Sociological Review 64:633–660

    Google Scholar 

  • Schubert U (1982) REMO – An interregional labor market model of Austria. Environ Plan A 14:1233–1249

    Google Scholar 

  • Shiba T, Tsurumi H (1988) Bayesian and non-Bayesian tests of independence in seemingly unrelated regressions. Int Econ Rev 29:377–395

    Google Scholar 

  • Shin C, Amemiya Y (1997) Algorithms for the likelihood-based estimation of the random coefficient model. Stat Probab Lett 32:189–199

    Google Scholar 

  • Swamy PAVB (1970) Efficient inference in a random coefficient regression model. Econometrica 38:311–323

    Google Scholar 

  • Swamy PAVB (1974) Linear models with random coefficients. In Zarembka P (ed) Frontiers in econometrics.Academic Press, New York, pp 143-168

    Google Scholar 

  • Verbeek M (2000) A guide to modern econometrics. Wiley, Chichester

    Google Scholar 

  • Wang X, Kockelman KM (2007) Specification and estimation of a spatially and temporally autocorrelated seemingly unrelated regression model: application to crash rates in China. Transportation 34:281–300

    Google Scholar 

  • Wang W, Lee LF (2013) Estimation of spatial panel data models with randomly missing data in the dependent variable. Reg Sci Urban Econ. doi:10.1016/j.regsciurbeco.2013.02.001

    Google Scholar 

  • Ward C, Dale A (1992) Geographical variation in female labour force participation: An application of multilevel modelling. Reg Stud 26:243–255

    Google Scholar 

  • White EN, Hewings GJD (1982) Space-time employment modeling: Some results using seemingly unrelated regression estimators. J Reg Sci 22:283–302

    Google Scholar 

  • Yang Z, Li C, Tse YK (2006) Functional form and spatial dependence in spatial panels. Econ Lett 91(1):138–145

    Google Scholar 

  • Zeilstra AS, Elhorst JP (2012) An integrated analysis of regional and national unemployment differentials in the European Union. Reg Stud (Forthcoming). http://www.tandfonline.com/loi/cres20

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Paul Elhorst .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Elhorst, J.P. (2014). Spatial Panel Data Models. In: Spatial Econometrics. SpringerBriefs in Regional Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40340-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40340-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40339-2

  • Online ISBN: 978-3-642-40340-8

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics