Advertisement

Disorders of Glycine, Serine, GABA, and Proline Metabolism

  • Johan L. K. Van HoveEmail author
  • Janet A. Thomas
Chapter

Abstract

In addition to the role as components of protein synthesis, several amino acids have other functions in the brain such as building blocks of other brain molecules and a role in neurotransmission. Disorders in catabolism of glycine and of proline are known. The disorders of the synthesis of serine and proline cause severe abnormalities. Serine is required for the synthesis of white matter compounds such as specialized lipids, and its deficiency results in severe hypomyelination. Proline is required for the synthesis of connective tissue proteins, and its deficiency results in laxity of skin and joints. Early treatment of synthetic defects such as serine has shown more promise to avoid severe symptoms. Disturbance of the neurotransmitter roles of GABA, glycine, and 4-hydroxybutyric acid results in severe neurological symptoms. The pathophysiology of these disorders is complex, as has been shown in the mouse model of 4-hydroxybutyric aciduria. In most disorders, diagnostic studies rely on careful measurement of metabolites using age-appropriate reference ranges, followed by molecular analysis.

Keywords

Williams Syndrome Proline Level Succinic Semialdehyde Velocardiofacial Syndrome Cutis Laxa 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Akaboshi S, Hogema BM, Novelletto A et al (2003) Mutational spectrum of the succinate semialdehyde dehydrogenase (ALDH5A1) gene and functional analysis of 27 novel disease-causing mutations in patients with SSADH deficiency. Hum Mutat 22:442–450PubMedCrossRefGoogle Scholar
  2. Baker P, Scharer G, Creadon-Swindell G et al (2012) Defect in lipoate synthesis cause variant non-ketotic hyperglycinemia. Mol Genet Metab 105:289Google Scholar
  3. Baker et al (2013) Variant non-ketotic hyperglycinaemia is caused by mutations in LIAS, BOLA3, and the novel gene GLRX5. Brain 10.1093/brain/awt328; with permission from Oxford University PressGoogle Scholar
  4. Baumgartner MR, Rabier D, Nassogne M-C et al (2005) Δ1-pyrroline-5-carboxylate synthase deficiency: neurodegeneration, cataracts and connective tissue manifestations combined with hyperammonaemia and reduced ornithine, citrulline, arginine and proline. Eur J Pediatr 164:31–36Google Scholar
  5. Bender H-U, Almashanu S, Steel G et al (2005) Functional consequences of PRODH missense mutations. Am J Hum Genet 76:409–420PubMedCentralPubMedCrossRefGoogle Scholar
  6. Bicknell LS, Pitt J, Aftimos S et al (2008) A missense mutation in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome. Eur J Hum Genet 16:1176–1186PubMedCrossRefGoogle Scholar
  7. Boneh A, Allan S, Mendelson D et al (2008) Clinical, ethical and legal considerations in the treatment of newborns with non-ketotic hyperglycinemia. Mol Genet Metab 94:143–147Google Scholar
  8. Bröer S, Balley CG, Kowalczuk S et al (2008) Iminoglycinuria and hyperglycinuria are discreet human phenotypes resulting from complex mutations in proline and glycine transporters. J Clin Invest 118:3881–3892Google Scholar
  9. Cameron JM, Janer A, Levandovskiy V et al (2011) Mutation in iron-sulfur cluster scaffold genes NFU1 and BOLA3 cause a fatal deficiency of multiple respiratory chain and 2-oxoacid dehydrogenase enzymes. Am J Hum Genet 89:486–495Google Scholar
  10. Coşkun T, Ozalp I, Tokatli A (1993) Iminoglycinuria: a benign type of inherited aminoaciduria. Turk J Pediatr 35:121–125PubMedGoogle Scholar
  11. De Koning T, Duran M, Van Maldergem L et al (2002) Congenital microcephaly and seizures due to 3-phosphoglycerate dehydrogenase deficiency: outcome of treatment with amino acids. J Inherit Metab Dis 25:119–125PubMedCrossRefGoogle Scholar
  12. de Koning TJ, Snell K, Duran M et al (2003) l-Serine in disease and development. Biochem J 137:653–661Google Scholar
  13. Di Rosa G, Pustorino G, Spano M et al (2008) Type I hyperprolinemia and proline dehydrogenase (PRODH) mutations in four Italian children with epilepsy and mental retardation. Psychiatr Genet 18:40–42PubMedCrossRefGoogle Scholar
  14. Dinopoulos A, Matsubara Y, Kure S (2005) Atypical variants of nonketotic hyperglycinemia. Mol Genet Metab 86:61–69PubMedCrossRefGoogle Scholar
  15. Falik-Zaccai T, Khayat M, Luder A et al (2010) A broad spectrum of developmental delay in a large cohort of prolidase deficiency patients demonstrates marked interfamilial and phenotypic intrafamilial variability. Am J Med Genet B Neuropsychiatr Genet 153:46–56Google Scholar
  16. Gibson KM, Christensen E, Jakobs C et al (1997) The clinical phenotype of succinic semialdehyde dehydrogenase deficiency (4-hydroxybutyric aciduria): case reports of 23 new patients. Pediatrics 99:567–574PubMedCrossRefGoogle Scholar
  17. Guernsey DL, Jiang H, Evans SC et al (2009) Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am J Hum Genet 85:120–129PubMedCentralPubMedCrossRefGoogle Scholar
  18. Guilmate A, Legallic S, Steel G et al (2010) Type I hyperprolinemia: genotype/phenotype correlations. Hum Mutat 31:961–965CrossRefGoogle Scholar
  19. Hart CE, Race V, Achouri Y et al (2007) Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am J Hum Genet 80:931–937PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hennermann JB, Berger JM, Grieben U et al (2012) Prediction of long-term outcome in glycine encephalopathy: a clinical survey. J Inherit Metab Dis 35:253–261PubMedCrossRefGoogle Scholar
  21. Hu CA, Lin W-W, Obie C et al (1999) Molecular enzymology of mammalian Δ1-pyrroline-5-carboxylate synthase. J Biol Chem 274:6754–6762Google Scholar
  22. Jaeken J, Casaer P, De Cock P et al (1984) Gamma-aminobutyric acid transaminase deficiency: a newly recognized inborn error of neurotransmitter metabolism. Neuropediatrics 15:165–169PubMedCrossRefGoogle Scholar
  23. Jaeken J, Detheux M, Fryns JP et al (1997) Phosphoserine phosphatase deficiency in a patient with Williams syndrome. J Med Genet 34:594–596PubMedCentralPubMedCrossRefGoogle Scholar
  24. Kelly JJ, Freeman AF, Wang H, Cowen EW, Kong HH (2010) An Amish boy with recurrent ulcerations of the lower extremities, teleangiectases of the hands, and chronic lung disease. J Am Acad Dermatol 62:1031–1034PubMedCentralPubMedCrossRefGoogle Scholar
  25. Klar A, Navon-Elkan P, Rubinow A et al (2010) Prolidase deficiency: it looks like systemic lupus erythematosus but it is not. Eur J Pediatr 169:727–732PubMedCrossRefGoogle Scholar
  26. Korman SH, Gutman A (2002) Pitfalls in the diagnosis of glycine encephalopathy (non-ketotic hyperglycinemia). Dev Med Child Neurol 44:712–720PubMedCrossRefGoogle Scholar
  27. Kouwenberg D, Gardeitchik T, Wevers RA et al (2011) Recognizable phenotype with common occurrence of microcephaly, psychomotor retardation, but no spontaneous bone fractures in autosomal recessive cutis laxa type IIB due to PYCR1 mutations. Am J Med Genet A 155:2331–2332CrossRefGoogle Scholar
  28. Kure S, Kato K, Dinopoulos A et al (2006) Comprehensive mutation analysis of GLDC, AMT, and GCSH in nonketotic hyperglycinemia. Hum Mutat 27:343–352PubMedCrossRefGoogle Scholar
  29. Lin D-S, Yeung C-Y, Liu H-L et al (2011) A novel mutation in PYCR1 causes an autosomal recessive cutis laxa with premature aging features in a family. Am J Med Genet A 155:1285–1289CrossRefGoogle Scholar
  30. Lupi A, Rossi A, Campari E et al (2006) Molecular characterisation of six patients with prolidase deficiency: identification of the first small duplication in the prolidase gene and of a mutation generating symptomatic and asymptomatic outcomes in the same family. J Med Genet 43:e58PubMedCentralPubMedCrossRefGoogle Scholar
  31. Martinelli D, Häberle J, Rubio V et al (2012) Understanding pyrroline-5-carboxylate synthetase deficiency: clinical, molecular, functional, and expression studies, structure-based analysis, and novel therapy with arginine. J Inherit Metab Dis 35:761–776PubMedCrossRefGoogle Scholar
  32. Mayr JA, Zimmermann FA, Fauth C et al (2011) Lipoic acid synthetase deficiency causes neonatal-onset epilepsy, defective mitochondrial energy metabolism and glycine elevation. Am J Hum Genet 89:792–797PubMedCentralPubMedCrossRefGoogle Scholar
  33. Moat S, Carling R, Nix A et al (2010) Multicentre age-related reference intervals for cerebrospinal fluid serine concentrations: implications for the diagnosis and follow-up of serine biosynthesis disorders. Mol Genet Metab 101:149–152PubMedCrossRefGoogle Scholar
  34. Navarro-Sastre A, Tort F, Stehling O et al (2011) A fatal mitochondrial disease is associated with defective NFU1 function in the maturation of a subset of mitochondrial Fe-S proteins. Am J Hum Genet 89:656–667PubMedCentralPubMedCrossRefGoogle Scholar
  35. Pearl PL, Novotny EJ, Acosta MT et al (2003) Succinic semialdehyde dehydrogenase deficiency in children and adults. Ann Neurol 54(Suppl 6):S73–S80PubMedCrossRefGoogle Scholar
  36. Pearl PL, Gibson KM, Cortez MA et al (2009) Succinic semialdehyde dehydrogenase deficiency: lessons from mice and men. J Inherit Metab Dis 32:343–352PubMedCentralPubMedCrossRefGoogle Scholar
  37. Pérez-Arellano I, Carmona-Álvarez F, Martinez AI et al (2010) Pyrroline-5-carboxylate synthase and proline biosynthesis: from osmotolerance to rare metabolic disease. Prot Sci 19:372–382Google Scholar
  38. Perry TL, Urquhart N, MacLean J et al (1975) Nonketotic hyperglycinemia. Glycine accumulation due to absence of glycine cleavage in the brain. N Engl J Med 292:1269–1273PubMedCrossRefGoogle Scholar
  39. Raux G, Bumsel E, Hecketsweiler B et al (2007) Involvement of hyperprolinemia in cognitive and psychiatric features of the 22q11 deletion syndrome. Hum Mol Genet 16:83–91PubMedCrossRefGoogle Scholar
  40. Reversade B, Escande-Beillard N, Dimopoulou A et al (2009) Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41:1016–1021PubMedCrossRefGoogle Scholar
  41. Skidmore DL, Chitayat D, Morgan T et al (2011) Further expansion of the phenotypic spectrum associated with mutations in ALDH18A1, encoding Δ1-pyrroline-5-carboxylate synthase (P5CS). Am J Med Genet A 155:1848–1856CrossRefGoogle Scholar
  42. Tabatabaie L, Klomp LW, Berger R et al (2010) L-serine synthesis in the central nervous system: a review on serine deficiency disorders. Mol Genet Metab 99:256–262PubMedCrossRefGoogle Scholar
  43. Tsuji M, Aida N, Obata T et al (2010) A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy. J Inherit Metab Dis 33:85–90PubMedCentralPubMedCrossRefGoogle Scholar
  44. Van Hove JL, Vande Kerckhove K, Hennermann JB et al (2005) Benzoate treatment and the glycine index in nonketotic hyperglycinemia. J Inherit Metab Dis 28:651–663PubMedCrossRefGoogle Scholar
  45. Wolff JA, Kulovitch S, Yu AL et al (1986) The effectiveness of benzoate in the management of seizures in nonketotic hyperglycinemia. Am J Dis Child 140:596–602PubMedGoogle Scholar
  46. Yildirim Y, Tolun A, Tüysüz B (2011) The phenotype caused by PYCR1 mutations corresponds to geroderma dysplasticum rather than autosomal recessive cutis laxa type 2. Am J Med Genet A 155:134–140CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Clinical Genetics and MetabolismThe Children’s HospitalAuroraUSA

Personalised recommendations