Advertisement

Emergency Diagnostic Procedures and Emergency Treatment

  • Stephanie GrünewaldEmail author
  • James Davison
  • Diego Martinelli
  • Marinus Duran
  • Carlo Dionisi-Vici
Chapter

Abstract

Metabolic emergencies need to be recognized early, and the initiation of appropriate treatment without any delay determines the overall outcome. A significant proportion of patients with inborn errors of metabolism are at risk of developing a metabolic emergency at some time of their life, particularly those children affected by an inborn error of metabolism that manifests as an acute intoxication. These patients usually present as a neonate – typically after an initial symptom-free interval of some days – in an emergency situation. Treatment needs to be initiated immediately even without having arrived at the exact diagnosis.

Keywords

Plasma Amino Acid Maple Syrup Urine Disease Maple Syrup Urine Disease Organic Aciduria Biotinidase Deficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bonnet D, Martin D, De Lonlay P et al (1999) Arrhythmias and conduction defects as presenting symptoms of fatty acid oxidation disorders in children. Circulation 100:2248–2253PubMedCrossRefGoogle Scholar
  2. Bosch AM, Stroek K, Abeling NG et al (2012) The Brown-Vialetto-Van Laere and Fazio Londe syndrome revisited: natural history, genetics, treatment and future perspectives. Orphanet J Rare Dis 7:83PubMedCentralPubMedCrossRefGoogle Scholar
  3. Broomfield A, Grunewald S (2012) How to use serum ammonia. Arch Dis Child Educ Pract Ed 97(2):72–77PubMedCrossRefGoogle Scholar
  4. Daniotti M, la Marca G, Fiorini P et al (2001) New developments in the treatment of hyperammonemia: emerging use of carglumic acid. Int J Gen Med 4:21–28Google Scholar
  5. Deodato F, Boenzi S, Santorelli FM et al (2006) Methylmalonic and propionic aciduria. Am J Med Genet C Semin Med Genet 142:104–112CrossRefGoogle Scholar
  6. Dionisi-Vici C, Ogier de Baulny H (2012) Emergency treatment. In: Saudubray JM, van den Berge G, Walter J (eds) Inborn metabolic diseases: diagnosis and treatment, 5th edn. Springer, Heidelberg, pp 103–111CrossRefGoogle Scholar
  7. Filipowicz HR, Ernst SL, Ashurst CL et al (2006) Metabolic changes associated with hyperammonemia in patients with propionic acidemia. Mol Genet Metab 88:123–130PubMedCrossRefGoogle Scholar
  8. Griffith AD, Cyr DM, Egan SG et al (1989) Inhibition of pyruvate carboxylase by sequestration of coenzyme A with sodium benzoate. Arch Biochem Biophys 269(1):201–207PubMedCrossRefGoogle Scholar
  9. Grünewald S, Champion MP, Leonard JV et al (2004) Biotinidase deficiency: a treatable leukoencephalopathy. Neuropediatrics 35:211–216Google Scholar
  10. Häberle J, Boddaert N, Burlina A et al (2012) Suggested guidelines for the diagnosis and management of urea cycle disorders. Orphanet J Rare Dis 7:32PubMedCentralPubMedCrossRefGoogle Scholar
  11. Hoffmann GF, Surtees RA, Wevers RA (1998) Cerebrospinal fluid investigations for neurometabolic disorders. Neuropediatrics 29:59–71PubMedCrossRefGoogle Scholar
  12. Marín-Valencia I, Vilaseca MA, Thió M et al (2010) Assessment of the perimortem protocol in neonates for the diagnosis of inborn errors of metabolism. Eur J Paediatr Neurol 14:125–130PubMedCrossRefGoogle Scholar
  13. Mayatepek E, Schulze A (1999) Metabolic decompensation and lactic acidosis in propionic acidaemia complicated by thiamine deficiency. J Inherit Metab Dis 22:189–190PubMedCrossRefGoogle Scholar
  14. Mills PB, Surtees RA, Champion MP et al (2005) Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum Mol Genet 14:1077–1086PubMedCrossRefGoogle Scholar
  15. Pérez-Dueñas B, Serrano M, Rebollo M et al (2013) Reversible lactic acidosis in a newborn with thiamine transporter-2 deficiency. Pediatrics 131(5):1670–1675CrossRefGoogle Scholar
  16. Picca S, Dionisi-Vici C, Abeni D et al (2001) Extracorporeal dialysis in neonatal hyperammonemia: modalities and prognostic indicators. Pediatr Nephrol 16:862–867PubMedCrossRefGoogle Scholar
  17. Rahman S, Footitt E, Varadkar S et al (2013) Inborn errors of metabolism causing encephalopathy. Dev Med Child Neurol 55:23–36PubMedCrossRefGoogle Scholar
  18. Saudubray JM (2012) Clinical approach to inborn errors of metabolism in paediatrics. In: Saudubray JM, van den Berge G, Walter J (eds) Inborn metabolic diseases: diagnosis and treatment, 5th edn. Springer, Heidelberg, pp 3–52CrossRefGoogle Scholar
  19. Stockler S, Plecko B, Gospe SM Jr. et al (2011) Pyridoxine dependent epilepsy and antiquitin deficiency: clinical and molecular characteristics and recommendations for diagnosis, treatment and follow-up. Mol Genet Metab 104:48–60PubMedCrossRefGoogle Scholar
  20. Walter JH, Wraith JE, Cleary MA (1995) Absence of acidosis in the initial presentation of propionic acidaemia. Arch Dis Child Fetal Neonatal Ed 72:197–199CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stephanie Grünewald
    • 1
    Email author
  • James Davison
    • 1
  • Diego Martinelli
    • 2
  • Marinus Duran
    • 3
  • Carlo Dionisi-Vici
    • 2
  1. 1.Metabolic Unit, Great Ormond Street Hospital for ChildrenNHS Foundation Trust and Institute for Child HealthLondonUK
  2. 2.Division of Metabolism, Department of Pediatric MedicineBambino Gesù Children’s Research HospitalRomeItaly
  3. 3.Laboratory Genetic Metabolic DiseasesAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations