Advertisement

Creatine Disorders

  • Sylvia StöcklerEmail author
  • Olivier Braissant
  • Andreas Schulze
Chapter

Abstract

Reduced creatine levels in the brain and in body fluids/tissues are the common denominator of primary (AGAT, GAMT, X-linked creatine transporter (SLC6A8) deficiency) and secondary (OAT deficiency) creatine disorders. Developmental delay/intellectual disability, speech delay, and behavioral problems, combined with epilepsy, and movement disorders are characteristic clinical features of primary creatine deficiency syndromes. Chorioretinal degeneration is the clinical hallmark of OAT deficiency. Diagnostic markers include high (GAMT) or low (AGAT) levels of guanidinoacetate, a high urinary creatine excretion (SLC6A8 deficiency), and high plasma ornithine levels (OAT deficiency). Treatments comprise substitution of creatine (AGAT deficiency) combined with l-ornithine (GAMT deficiency) and arginine-restricted diet (GAMT and OAT deficiency). Administration of creatine and of substrates for intracerebral creatine synthesis (l-arginine and l-glycine) have limited therapeutic effects in CrT deficiency. Despite availability of causal treatments and improved outcomes after early recognition, creatine disorders are still under-recognized. All patients with unexplained developmental delay/intellectual disability should be screened for these disorders.

Keywords

Intellectual Disability Creatine Supplementation Creatine Monohydrate Creatine Transporter Creatine Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Almeida LS, Verhoeven NM, Roos B et al (2004) Creatine and guanidinoacetate: diagnostic markers for inborn errors in creatine biosynthesis and transport. Mol Genet Metab 82:214–219PubMedCrossRefGoogle Scholar
  2. Braissant O (2012) Creatine and guanidinoacetate transport at blood–brain and blood-cerebrospinal fluid barriers. J Inherit Metab Dis 35:655–664PubMedCrossRefGoogle Scholar
  3. Cheillan D, Salomons GS, Acquaviva C et al (2006) Prenatal diagnosis of guanidinoacetate methyltransferase deficiency: increased guanidinoacetate concentrations in amniotic fluid. Clin Chem 52:775–777PubMedCrossRefGoogle Scholar
  4. Dewey KG, Beaton G, Fjeld C, Lönnerdal B, Reeds P (1996) Protein requirements of infants and children. Eur J Clin Nutr 50(Suppl1):S119–S147PubMedGoogle Scholar
  5. Elpeleg N, Korman SH (2001) Sustained oral lysine supplementation in ornithine delta-aminotransferase deficiency. J Inherit Metab Dis 24:423–424PubMedCrossRefGoogle Scholar
  6. Hayasaka S, Saito T, Nakajima H, Takahashi O, Mizuno K, Tada K (1985) Clinical trials of vitamin B6 and proline supplementation for gyrate atrophy of the choroid and retina. Br J Ophthalmol 69:283–290PubMedCentralPubMedCrossRefGoogle Scholar
  7. Heinänen K, Näntö-Salonen K, Komu M et al (1999) Creatine corrects muscle 31P spectrum in gyrate atrophy with hyperornithinaemia. Eur J Clin Invest 29:1060–1065PubMedCrossRefGoogle Scholar
  8. Joncquel M, Briand G, Valayannopoulos V et al (2011) Determination of new reference values for GAA and creatine from a large cohort of controls subjects and description of the French patients affected of creatine deficiency disorders (CDS). J Inherit Metab Dis 34(Suppl 3):S128Google Scholar
  9. Kurosawa Y, deGrauw TJ, Lindquist DM et al (2012) Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency. J Clin Invest 122:2837–2846PubMedCentralPubMedCrossRefGoogle Scholar
  10. Mercimek-Mahmutoglu S, Connolly MB, Poskitt KJ et al (2010) Treatment of intractable epilepsy in a female with SLC6A8 deficiency. Mol Genet Metab 101:409–412PubMedCrossRefGoogle Scholar
  11. Mercimek-Mahmutoglu S, Stöckler-Ipsiroglu S, Adami A et al (2006) GAMT deficiency: features, treatment, and outcome in an inborn error of creatine synthesis. Neurology 67:480–484PubMedCrossRefGoogle Scholar
  12. Näntö-Salonen K, Komu M, Lundbom N et al (1999) Reduced brain creatine in gyrate atrophy of the choroid and retina with hyperornithinemia. Neurology 53:303–307PubMedCrossRefGoogle Scholar
  13. Ndika JD, Johnston K, Barkovich JA et al (2012) Developmental progress and creatine restoration upon long-term creatine supplementation of a patient with arginine:glycine amidinotransferase deficiency. Mol Genet Metab 106:48–54PubMedCrossRefGoogle Scholar
  14. Peltola K, Heinonen OJ, Näntö-Salonen K, Pulkki K, Simell O (2000) Oral lysine feeding in gyrate atrophy with hyperornithinaemia–a pilot study. J Inherit Metab Dis 23:305–357PubMedCrossRefGoogle Scholar
  15. Rosenberg EH, Almeida LS, Kleefstra T et al (2004) High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 75:97–105PubMedCentralPubMedCrossRefGoogle Scholar
  16. Schulze A (2003) Creatine deficiency syndromes. Mol Cell Biochem 244:143–150PubMedCrossRefGoogle Scholar
  17. Schulze A, Battini R (2007) Pre-symptomatic treatment of creatine biosynthesis defects. Subcell Biochem 46:167–181PubMedCrossRefGoogle Scholar
  18. Schulze A, Ebinger F, Rating D, Mayatepek E (2001) Improving treatment of guanidinoacetate methyltransferase deficiency: reduction of guanidinoacetic acid in body fluids by arginine restriction and ornithine supplementation. Mol Genet Metab 74:413–419PubMedCrossRefGoogle Scholar
  19. Shih VE (2003) Amino acid analysis. In: Blau N, Duran M, Blaskovics ME, Gibson KM (eds) Physician’s guide to the laboratory diagnosis of metabolic diseases. Springer, Berlin/Heidelberg/New York, pp 11–26CrossRefGoogle Scholar
  20. Stockler-Ipsiroglu S, Mercimek-Mahmutoglu S, Salomons GJ (2012) Creatine deficiency syndromes. In: Saudubray JM, van den Berghe G, Walter JH (eds) Inborn metabolic diseases, 5th edn. Springer, Berlin/Heidelberg, pp 239–247CrossRefGoogle Scholar
  21. Struys EA, Verhoeven-Duif N, Jakobs C (2008) Creatine and its metabolites. In: Blau N, Duran M, Gibson MK (eds) Laboratory guide to the methods in biochemical genetics. Springer, Berlin/Heidelberg, pp 739–749CrossRefGoogle Scholar
  22. Valayannopoulos V, Boddaert N, Chabli A et al (2012) Treatment by oral creatine, L-arginine and L-glycine in six severely affected patients with creatine transporter defect. J Inherit Metab Dis 35:151–157PubMedCrossRefGoogle Scholar
  23. Valle D, Simell O (2001) The hyperornithinemias. In: Scriver CR, Beaudet A, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw Hill, New York, pp 1857–1896Google Scholar
  24. Valle D, Walser M, Brusilow S, Kaiser-Kupfer MI, Takki K (1981) Gyrate atrophy of the choroid and retina: biochemical considerations and experience with an arginine-restricted diet. Ophthalmology 88:325–330PubMedCrossRefGoogle Scholar
  25. van de Kamp JM, Pouwels PJ, Aarsen FK et al (2012) Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect. J Inherit Metab Dis 35:141–149PubMedCentralPubMedCrossRefGoogle Scholar
  26. Weleber RG, Kennaway NG (1981) Clinical trial of vitamin B6 for gyrate atrophy of the choroid and retina. Ophthalmology 88:316–324PubMedCrossRefGoogle Scholar
  27. Young S, Struys E, Wood T (2007) Quantification of creatine and guanidinoacetate using GC-MS and LC-MS/MS for the detection of cerebral creatine deficiency syndromes. Curr Protoc Hum Gen 17.3.1–17.3.18Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sylvia Stöckler
    • 1
    Email author
  • Olivier Braissant
    • 2
  • Andreas Schulze
    • 3
  1. 1.Division of Biochemical DiseasesBC Children’s Hospital, University of British ColumbiaVancouverCanada
  2. 2.Service of Biomedicine, Department of LaboratoriesUniversity Hospital of LausanneLausanneSwitzerland
  3. 3.Division of Clinical and Metabolic Genetics, Department of PediatricsThe Hospital for Sick Children, University of TorontoTorontoCanada

Personalised recommendations