Advertisement

Neurotransmitter Disorders

  • Thomas Opladen
  • Georg F. HoffmannEmail author
Chapter

Abstract

Neurotransmitters include the catecholamines (dopamine, norepinephrine, and epinephrine) and the indoleamines (serotonin and melatonin). They are chemical messengers, which mediate, amplify, or modulate synaptic transmission between neurons in the brain. Consequently, neurotransmitters are involved in central brain functions including control of movements and behavior, neuronal excitation and inhibition, the regulation of body temperature, pain threshold, memory, and a host of other processes. Inherited deficiencies of neurotransmitters encompass defects of neurotransmitter biosynthesis and catabolism, as well as defects of neurotransmitter transporters. They result in a wide variety of clinical signs and symptoms. This chapter will focus on primary disorders of serotonin and dopamine metabolism. Described defects are deficiencies of tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), dopamine ß-hydroxylase (DßH), monoamine oxidase A, as well as the hereditary dopamine transporter and the dopamin-serotonin vesicular transport defect.

Neurotransmitter disorders are important to recognize because early diagnosis and prompt therapeutic intervention seem to improve motor and cognitive outcome. The disease predominantly starts during infancy and early childhood. The specific clinical presentation of individual neurotransmitter diseases is determined by the type and severity of the underlying disorder. The clinical phenotype is not characteristic but can mimic that of other neurological disorders. Although a detailed clinical history and physical examination are essential, the diagnosis is almost exclusively based on the quantitative determination of neurotransmitters or their metabolites in cerebrospinal fluid (CSF). The additional determination of pterin metabolites is needed for the differentiation from deficiencies of BH4 metabolism. Every diagnosis must be confirmed by molecular testing. The aim of their treatment is to restore neurotransmitter homeostasis. Bypassing the metabolic block using levodopa/carbidopa together with dopamine agonists has led to remarkable clinical improvement in TH deficiency. In patients with AADC deficiency and with dopamine receptor deficiency, syndrome treatment options are limited and in many cases not satisfactory. Patients with DβH deficiency benefit from dihydroxyphenylserine (DOPS) administration. A specific therapy with sustained effect for MAO-A deficiency or dopamine transporter deficiency has not yet been described.

Keywords

Tyrosine Hydroxylase Dopamine Agonist Biogenic Amine Homovanillic Acid COMT Inhibitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Anselm IA, Darras BT (2006) Catecholamine toxicity in aromatic L-amino acid decarboxylase deficiency. Pediatr Neurol 35(2):142–144. doi: 10.1016/j.pediatrneurol.2006.01.008, S0887-8994(06)00079-8 [pii]PubMedCrossRefGoogle Scholar
  2. Assmann B, Surtees R, Hoffmann GF (2003) Approach to the diagnosis of neurotransmitter diseases exemplified by the differential diagnosis of childhood-onset dystonia. Ann Neurol 54(Suppl 6):S18–S24. doi: 10.1002/ana.10628 PubMedCrossRefGoogle Scholar
  3. Assmann BE, Robinson RO, Surtees RA et al (2004) Infantile Parkinsonism-dystonia and elevated dopamine metabolites in CSF. Neurology 62(10):1872–1874PubMedCrossRefGoogle Scholar
  4. Bartholome K, Ludecke B (1998) Mutations in the tyrosine hydroxylase gene cause various forms of L-dopa-responsive dystonia. Adv Pharmacol 42:48–49PubMedCrossRefGoogle Scholar
  5. Bräutigam C, Wevers RA, Jansen RJ et al (1998) Biochemical hallmarks of tyrosine hydroxylase deficiency. Clin Chem 44(9):1897–1904PubMedGoogle Scholar
  6. Bräutigam C, Hyland K, Wevers R et al (2002) Clinical and laboratory findings in twins with neonatal epileptic encephalopathy mimicking aromatic L-amino acid decarboxylase deficiency. Neuropediatrics 33(3):113–117. doi: 10.1055/s-2002-33673 PubMedCrossRefGoogle Scholar
  7. Brun L, Ngu LH, Keng WT et al (2010) Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. Neurology 75(1):64–71. doi: 10.1212/WNL.0b013e3181e620ae, WNL.0b013e3181e620ae [pii]PubMedCrossRefGoogle Scholar
  8. Brunner HG, Nelen M, Breakefield XO, Ropers HH, van Oost BA (1993a) Abnormal behavior associated with a point mutation in the structural gene for monoamine oxidase A. Science 262(5133):578–580PubMedCrossRefGoogle Scholar
  9. Brunner HG, Nelen MR, van Zandvoort P, Abeling NG, van Gennip AH, Wolters EC, Kuiper MA, Ropers HH, van Oost BA (1993b) X-linked borderline mental retardation with prominent behavioral disturbance: phenotype, genetic localization, and evidence for disturbed monoamine metabolism. Am J Hum Genet 52(6):1032–1039PubMedCentralPubMedGoogle Scholar
  10. Chang YT, Sharma R, Marsh JL, McPherson JD, Bedell JA, Knust A, Brautigam C, Hoffmann GF, Hyland K (2004) Levodopa-responsive aromatic L-amino acid decarboxylase deficiency. Ann Neurol 55(3):435–438. doi: 10.1002/ana.20055 PubMedCrossRefGoogle Scholar
  11. Cheung NW, Earl J (2001) Monoamine oxidase deficiency: a cause of flushing and attention-deficit/ hyperactivity disorder? Arch Intern Med 161(20):2503–2504, ibr1112-3 [pii]PubMedCrossRefGoogle Scholar
  12. Edelstein SB, Breakefield XO (1986) Monoamine oxidases A and B are differentially regulated by glucocorticoids and “aging” in human skin fibroblasts. Cell Mol Neurobiol 6(2):121–150Google Scholar
  13. Haavik J, Blau N, Thöny B (2008) Mutations in human monoamine-related neurotransmitter pathway genes. Hum Mutat 29(7):891–902. doi: 10.1002/humu.20700 PubMedCrossRefGoogle Scholar
  14. Herlenius E, Lagercrantz H (2001) Neurotransmitters and neuromodulators during early human development. Early Hum Dev 65(1):21–37PubMedCrossRefGoogle Scholar
  15. Hoffmann GF, Surtees RA, Wevers RA (1998) Cerebrospinal fluid investigations for neurometabolic disorders. Neuropediatrics 29(2):59–71. doi: 10.1055/s-2007-973538 PubMedCrossRefGoogle Scholar
  16. Hyland K, Surtees RA, Rodeck C, Clayton PT (1992) Aromatic L-amino acid decarboxylase deficiency: clinical features, diagnosis, and treatment of a new inborn error of neurotransmitter amine synthesis. Neurology 42(10):1980–1988PubMedCrossRefGoogle Scholar
  17. Kurian MA, Zhen J, Cheng SY, Li Y, Mordekar SR, Jardine P, Morgan NV, Meyer E, Tee L, Pasha S, Wassmer E, Heales SJ, Gissen P, Reith ME, Maher ER (2009) Homozygous loss-of-function mutations in the gene encoding the dopamine transporter are associated with infantile parkinsonism-dystonia. J Clin Invest 119(6):1595–1603. doi: 10.1172/JCI39060, 39060 [pii]PubMedCentralPubMedGoogle Scholar
  18. Kurian MA, Gissen P, Smith M, Heales SJ, Clayton PT (2011a) The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. Lancet Neurol 10(8):721–733. doi: 10.1016/S1474-4422(11)70141-7, S1474-4422(11)70141-7 [pii]PubMedCrossRefGoogle Scholar
  19. Kurian MA, Li Y, Zhen J, Meyer E, Hai N, Christen H-J, Hoffmann GF, Jardine P, von Moers A, Mordekar SR, O’Callaghan F, Wassmer E, Wraige E, Dietrich C, Lewis T, Hyland K, Heales SJR, Sanger T, Gissen P, Assmann BE, Reith MEA, Maher ER (2011b) Clinical and molecular characterisation of hereditary dopamine transporter deficiency syndrome: an observational cohort and experimental study. The Lancet Neurology 10(1):54–62CrossRefGoogle Scholar
  20. Ludecke B, Bartholome K (1995) Frequent sequence variant in the human tyrosine hydroxylase gene. Hum Genet 95(6):716PubMedCrossRefGoogle Scholar
  21. Man in ’t Veld AJ, Boomsma F, Moleman P, Schalekamp MA (1987) Congenital dopamine-beta-hydroxylase deficiency. A novel orthostatic syndrome. Lancet 1(8526):183–188PubMedCrossRefGoogle Scholar
  22. Manegold C, Hoffmann GF, Degen I, Ikonomidou H, Knust A, Laass MW, Pritsch M, Wilichowski E, Horster F (2009) Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. J Inherit Metab Dis 32(3):371–380. doi: 10.1007/s10545-009-1076-1 PubMedCrossRefGoogle Scholar
  23. Pons R, Ford B, Chiriboga CA, Clayton PT, Hinton V, Hyland K, Sharma R, De Vivo DC (2004) Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. Neurology 62(7):1058–1065PubMedCrossRefGoogle Scholar
  24. Rilstone JJ, Alkhater RA, Minassian BA (2013) Brain dopamine-serotonin vesicular transport disease and its treatment. N Engl J Med 368 (6):543–550. doi: 10.1056/NEJMoa1207281 Google Scholar
  25. Robertson D, Goldberg MR, Onrot J, Hollister AS, Wiley R, Thompson JG Jr, Robertson RM (1986) Isolated failure of autonomic noradrenergic neurotransmission. Evidence for impaired beta-hydroxylation of dopamine. N Engl J Med 314(23):1494–1497. doi: 10.1056/NEJM198606053142307 PubMedCrossRefGoogle Scholar
  26. Senard JM, Rouet P (2006) Dopamine beta-hydroxylase deficiency. Orphanet J Rare Dis 1:7. doi: 10.1186/1750-1172-1-7, 1750-1172-1-7 [pii]PubMedCentralPubMedCrossRefGoogle Scholar
  27. Surtees R, Hyland K (1990) L-3,4-dihydroxyphenylalanine (levodopa) lowers central nervous system S-adenosylmethionine concentrations in humans. J Neurol Neurosurg Psychiatry 53:569–72Google Scholar
  28. Swoboda KJ, Saul JP, McKenna CE, Speller NB, Hyland K (2003) Aromatic L-amino acid decarboxylase deficiency: overview of clinical features and outcomes. Ann Neurol 54(Suppl 6):S49–S55. doi: 10.1002/ana.10631 PubMedCrossRefGoogle Scholar
  29. Willemsen MA, Verbeek MM, Kamsteeg EJ, de Rijk-van Andel JF, Aeby A, Blau N, Burlina A, Donati MA, Geurtz B, Grattan-Smith PJ, Haeussler M, Hoffmann GF, Jung H, de Klerk JB, van der Knaap MS, Kok F, Leuzzi V, de Lonlay P, Megarbane A, Monaghan H, Renier WO, Rondot P, Ryan MM, Seeger J, Smeitink JA, Steenbergen-Spanjers GC, Wassmer E, Weschke B, Wijburg FA, Wilcken B, Zafeiriou DI, Wevers RA (2010) Tyrosine hydroxylase deficiency: a treatable disorder of brain catecholamine biosynthesis. Brain 133(Pt 6):1810–1822. doi: 10.1093/brain/awq087, awq087 [pii]PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Inborn Metabolic Diseases, Department of PediatricsUniversity Children’s HospitalHeidelbergGermany
  2. 2.Department of PediatricsUniversity Children’s HospitalHeidelbergGermany

Personalised recommendations