Advertisement

Disorders of Ketone Body Metabolism

  • Jörn Oliver SassEmail author
  • Sarah C. Grünert
Chapter

Abstract

Ketone body utilisation is of special importance in times of fasting/starvation or increased energy demand. However, both formation and utilisation of ketone bodies (ketogenesis and ketolysis) can be impeded by inborn errors of metabolism. In case of genetic deficiency of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (mHMGS) or of 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HMGL), the formation of ketone bodies is impaired. If one of the enzymes of ketolysis is affected, namely, succinyl-CoA:3-oxoacid CoA transferase (SCOT) or methylacetoacetyl-CoA thiolase (MAT, “β-ketothiolase”), ketones accumulate and a life-threatening ketoacidosis may result. Since treatment options allow to minimise the risk for metabolic decompensations, awareness of those diseases is important, as is information on how to treat and to prevent clinical manifestations.

Keywords

Ketone Body Ketogenic Diet Glycogen Storage Disease Type Metabolic Decompensation Urinary Organic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aledo R, Mir C, Dalton RN, Turner C, Pié J, Hegardt FG, Casals N, Champion MP (2006) Refining the diagnosis of mitochondrial HMG-CoA synthase deficiency. J Inherit Metab Dis 29:207–211PubMedCrossRefGoogle Scholar
  2. Aramaki S, Lehotay D, Sweetman L, Nyhan WL, Winter SC, Middleton B (1991) Urinary excretion of 2-methylacetoacetate, 2-methyl-3-hydroxybutyrate and tiglylglycine after isoleucine loading in the diagnosis of 2-methylacetoacetyl-CoA thiolase deficiency. J Inherit Metab Dis 14:63–74PubMedCrossRefGoogle Scholar
  3. Bennett MJ, Hosking GP, Smith MF, Gray RGF, Middleton B (1984) Biochemical investigations on a patient with a defect in cytosolic acetoacetyl-CoA thiolase, associated with mental retardation. J Inherit Metab Dis 7:125–128PubMedCrossRefGoogle Scholar
  4. Bischof F, Nagele T, Wanders RJ, Trefz FK, Melms A (2004) 3-hydroxy-3-methylglutaryl-coA lyase deficiency in an adult with leukoencephalopathy. Ann Neurol 56:727–730PubMedCrossRefGoogle Scholar
  5. Bonnefont JP, Specola NB, Vassault A, Lombes A, Ogier H, de Klerk JB, Munnich A, Coude M, Paturneau-Jouas M, Saudubray JM (1990) The fasting test in paediatrics: application to the diagnosis of pathological hypo- and hyperketotic states. Eur J Pediatr 150:80–85PubMedCrossRefGoogle Scholar
  6. Dasouki M, Buchanan D, Mercer N, Gibson KM, Thoene J (1987) 3-Hydroxy-3-methylglutaric aciduria: response to carnitine therapy and fat and leucine restriction. J Inherit Metab Dis 10:142–146PubMedCrossRefGoogle Scholar
  7. De Groot CJ, Luit-De Haan G, Hulstaert CE, Hoomes FA (1977) A patient with severe neurologic symptoms and acetoacetyl-CoA thiolase deficiency. Pediatr Res 11:1112–1116PubMedCrossRefGoogle Scholar
  8. Dixon MA, Leonard JV (1992) Intercurrent illness in inborn errors of intermediary metabolism. Arch Dis Child 67:1387–1391PubMedCentralPubMedCrossRefGoogle Scholar
  9. Duran M (2003) Disorders of mitochondrial fatty acid oxidation and ketone body handling. In: Blau N, Duran M, Blaskovics M, Gibson KM (eds) Physician’s guide to the laboratory diagnosis of metabolic diseases, 2nd edn. Springer, Berlin, pp 309–334CrossRefGoogle Scholar
  10. Fukao T, Shintaku H, Kusubae R, Zhang X-Q, Nakamura K, Kondo M, Kondo N (2004) Patients homozygous for the T435N mutation of succinyl-CoA:3-ketoacid CoA transferase (SCOT) do not show permanent ketosis. Pediatr Res 56:858–863PubMedCrossRefGoogle Scholar
  11. Fukao T, Maruyama S, Ohura T, Hasegawa Y, Toyoshima M, Haapalainen AM, Kuwada N, Imamuram I, Yuasa I, Wierenga RK, Yamaguchi S, Kondo N (2011a) Three Japanese patients with beta-ketothiolase deficiency who share a mutation, c.431A > C (H144P) in ACAT1. Subtle abnormality in urinary organic acid analysis and blood acylcarnitine analysis using tandem mass spectrometry. JIMD Rep Case Res Rep 3:107–115Google Scholar
  12. Fukao T, Sass JO, Kursula P, Thimm E, Wendel U, Ficicioglu C, Monastiri K, Guffon N, Barić I, Zabot MT, Kondo N (2011b) Clinical and molecular characterization of five patients with succinyl-CoA:3-ketoacid CoA transferase (SCOT) deficiency. Biochim Biophys Acta 1812:619–624PubMedCrossRefGoogle Scholar
  13. Gibson KM, Elpeleg ON, Morton DH, Wappner RS (2003) Disorders of leucine metabolism. In: Blau N, Duran M, Blaskovics M, Gibson KM (eds) Physician’s guide to the laboratory diagnosis of metabolic diseases, 2nd edn. Springer, Berlin, pp 165–189CrossRefGoogle Scholar
  14. Kouremenos KA, Pitt J, Marriott PJ (2010) Metabolic profiling of infant urine using comprehensive two-dimensional gas chromatography: application to the diagnosis of organic acidurias and biomarker discovery. J Chromatogr A 1217:104–111PubMedCrossRefGoogle Scholar
  15. Lehnert W (1994) Long-term results of selective screening for inborn errors of metabolism. Eur J Pediatr 153:S9–S13PubMedCrossRefGoogle Scholar
  16. Mitchell GA, Fukao T (2001) Inborn errors of ketone body catabolism. In: Scriver CR, Beaudet al, Sly WS, Valle D (eds) Metabolic and molecular bases of inherited disease, 8th edn. McGraw-Hill, New York, pp 2327–2356Google Scholar
  17. Mitchell GA, Kassovska-Bratinova S, Boukaftane Y, Robert MF, Wang SP, Ashmarina L, Lambert M, Lapierre P, Potier E (1995) Medical aspects of ketone body metabolism. Clin Invest Med 18:193–216PubMedGoogle Scholar
  18. Morris AA, Thekekara A, Wilks Z, Clayton PT, Leonard JV, Aynsley-Green A (1996) Evaluation of fasts for investigating hypoglycaemia or suspected metabolic disease. Arch Dis Child 75:115–119PubMedCentralPubMedCrossRefGoogle Scholar
  19. Muroi J, Yorifuji T, Uematsu A, Nakahata T (2000) Cerebral infarction and pancreatitis: possible complications of patients with 3-hydroxy-3-methylglutaryl-CoA lyase deficiency. J Inherit Metab Dis 23:636–637PubMedCrossRefGoogle Scholar
  20. Nyhan WL, Gibson KM (2003) Disorders of valine-isoleucine metabolism. In: Blau N, Duran M, Blaskovics M, Gibson KM (eds) Physician’s guide to the laboratory diagnosis of metabolic diseases, 2nd edn. Springer, Berlin, pp 191–213CrossRefGoogle Scholar
  21. Ofman R, Ruiter JP, Feenstra M, Duran M, Poll-The BT, Zschocke J, Ensenauer R, Lehnert W, Sass JO, Sperl W, Wanders RJ (2003) 2-Methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency is caused by mutations in the HADH2 gene. Am J Hum Genet 72:1300–1307PubMedCentralPubMedCrossRefGoogle Scholar
  22. Sass JO (2012) Inborn errors of ketogenesis and ketone body utilization. J Inherit Metab Dis 35:23–28PubMedCrossRefGoogle Scholar
  23. Sass JO, Kühlwein E, Klauwer D, Rohrbach M, Baumgartner MR (2013) Hemodiafiltration in mitochondrial 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMG-CoA synthase) deficiency. J Inherit Metab Dis 36(Suppl 2):S189Google Scholar
  24. Søvik O (1993) Mitochondrial 2-methylacetoacetyl-CoA thiolase deficiency: an inborn error of isoleucine and ketone body metabolism. J Inherit Metab Dis 16:46–54PubMedCrossRefGoogle Scholar
  25. Weinstein DA, Correia CE, Saunders AC, Wolfsdorf JI (2006) Hepatic glycogen synthase deficiency: an infrequently recognized cause of ketotic hypoglycemia. Mol Genet Metab 87:284–288PubMedCentralPubMedCrossRefGoogle Scholar
  26. Zschocke J, Hoffmann GF (2011) Vademecum metabolicum. Diagnosis and treatment of inborn errors of metabolism. Schattauer GmbH, StuttgartGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Clinical Chemistry and BiochemistryUniversity Children’s Hospital ZürichZürichSwitzerland
  2. 2.Zentrum für Kinder- und JugendmedizinUniversitätsklinikum FreiburgFreiburgGermany

Personalised recommendations