Skip to main content

Abstract

Molybdenum (Mo) cofactor deficiency (MoCD) is characterized by neonatal seizures, high-pitch crying, convulsions, and abnormal EEG and MRI findings accompanied by rapidly progressing neurodegeneration. In the absence of treatment, patients usually die within the first years of life and show no neurodevelopmental improvement. The molecular cause of the disease is mainly due to the loss of sulfite oxidase activity, one out of four molybdenum cofactor-dependent enzymes. Sulfite oxidase catalyzes the terminal step in the oxidative degradation of cysteine; a loss of activity results in the accumulation of toxic sulfite, which in turn triggers the alteration of secondary-related metabolites such as S-sulfocysteine, thiosulfate, taurine, hypotaurine, and cystine. Xanthine oxidoreductase catalyzes the catabolism of purines from hypoxanthine to xanthine and further to uric acid, which is reduced in patients while xanthine and to a lesser extent hypoxanthine accumulate. The molybdenum cofactor (Moco) is synthesized by a three-step biosynthetic pathway, which involves gene products of the MOCS1, MOCS2, MOCS3, and GEPH loci. Depending on the mutation, type A, B, and C deficiencies are known. While MoCD types A and B are clinically indistinguishable, MoCD type C has a more severe neurological presentation due to the loss of synaptic inhibition, which is dependent on GEPHYRIN function. Dietary restriction (low cysteine and methionine) has been reported in some case, however, disease improvement was marginal. A first causative therapy has been established for MoCD type A patients and is based on the treatment with cyclic pyranopterin monophosphate, the first intermediate in the molybdenum cofactor pathway. Given the high neurotoxicity of sulfite and its related compounds, early diagnosis has been shown to be the key determinant in the treatment outcome. Patients that were treated shortly after birth and have not been exposed to extensive anticonvulsive therapy showed best clinical and neurodevelopmental outcome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arenas M, Fairbanks LD, Vijayakumar K, Carr L, Escuredo E, Marinaki AM (2009) An unusual genetic variant in the MOCS1 gene leads to complete missplicing of an alternatively spliced exon in a patient with molybdenum cofactor deficiency. J Inherit Metab Dis 32:560–569

    Article  CAS  PubMed  Google Scholar 

  • Arslanoglu S, Yalaz M, Goksen D, Coker M, Tutuncuoglu S, Akisu M, Darcan S, Kultursay N, Ciris M, Demirtas E (2001) Molybdenum cofactor deficiency associated with Dandy-Walker complex. Brain Dev 23:815–818

    Article  CAS  PubMed  Google Scholar 

  • Bagley PJ, Stipanuk MH (1994) The activities of rat hepatic cysteine dioxygenase and cysteinesulfinate decarboxylase are regulated in a reciprocal manner in response to dietary casein level. J Nutr 124:2410–2421

    CAS  PubMed  Google Scholar 

  • Bamforth FJ, Johnson JL, Davidson AGF, Wong LTK, Lockitsch G, Applegrath DA (1990) Biochemical investigation of a child with molybdenum deficiency. Clin Biochem 23:537–542

    Article  CAS  PubMed  Google Scholar 

  • Baranano DE, Ferris CD, Snyder SH (2001) Atypical neural messengers. Trends Neurosci 24:99–106

    Article  CAS  PubMed  Google Scholar 

  • Barbot C, Martins E, Vilarinho L, Dorche C, Cardoso ML (1995) A mild form of infantile isolated sulphite oxidase deficiency. Neuropediatrics 26:322–324

    Article  CAS  PubMed  Google Scholar 

  • Bayram E, Topcu Y, Karakaya P, Yis U, Cakmakci H, Ichida K, Kurul SH (2013) Molybdenum cofactor deficiency: review of 12 cases (MoCD and review). Eur J Paediatr Neurol 17:1–6

    Article  PubMed  Google Scholar 

  • Belaidi AA, Schwarz G (2013) Molybdenum cofactor deficiency: metabolic link between taurine and S-sulfocysteine. Adv Exp Med Biol 776:13–19

    Article  PubMed  Google Scholar 

  • Belaidi AA, Arjune S, Santamaria-Araujo JA, Sass JO, Schwarz G (2012) Molybdenum cofactor deficiency: a new HPLC method for fast quantification of s-sulfocysteine in urine and serum. JIMD Rep 5:35–43

    Article  PubMed Central  PubMed  Google Scholar 

  • Boles RG, Ment LR, Meyn MS, Horwich AL, Kratz LE, Rinaldo P (1993) Short-term response to dietary therapy in molybdenum cofactor deficiency. Ann Neurol 34:742–744

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury MM, Dosche C, Lohmannsroben HG, Leimkuhler S (2012) Dual role of the molybdenum cofactor biosynthesis protein MOCS3 in tRNA thiolation and molybdenum cofactor biosynthesis in humans. J Biol Chem 287:17297–17307

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chung TK, Funk MA, Baker DH (1990) L-2-oxothiazolidine-4-carboxylate as a cysteine precursor: efficacy for growth and hepatic glutathione synthesis in chicks and rats. J Nutr 120:158–165

    CAS  PubMed  Google Scholar 

  • Del Rizzo M, Burlina AP, Sass JO, Beermann F, Zanco C, Cazzorla C, Bordugo A, Giordano L, Manara R, Burlina AB (2013) Metabolic stroke in a late-onset form of isolated sulfite oxidase deficiency. Mol Genet Metab 108:263–266

    Article  PubMed  Google Scholar 

  • Dunlop J, Fear A, Griffiths R (1991) Glutamate uptake into synaptic vesicles – inhibition by sulphur amino acids. Neuroreport 2:377–379

    Article  CAS  PubMed  Google Scholar 

  • Duran M, Beemer FA, van de Heiden C, Korteland J, de Bree PK, Brink M, Wadman SK, Lombeck I (1978) Combined deficiency of xanthine oxidase and sulphite oxidase: a defect of molybdenum metabolism or transport? J Inherit Metab Dis 1:175–178

    Article  CAS  PubMed  Google Scholar 

  • El Idrissi A, Trenkner E (1999) Growth factors and taurine protect against excitotoxicity by stabilizing calcium homeostasis and energy metabolism. J Neurosci 19:9459–9468

    PubMed  Google Scholar 

  • Feng G, Tintrup H, Kirsch J, Nichol MC, Kuhse J, Betz H, Sanes JR (1998) Dual requirement for gephyrin in glycine receptor clustering and molybdoenzyme activity [see comments]. Science 282:1321–1324

    Article  CAS  PubMed  Google Scholar 

  • Footitt EJ, Heales SJ, Mills PB, Allen GF, Oppenheim M, Clayton PT (2011) Pyridoxal 5′-phosphate in cerebrospinal fluid; factors affecting concentration. J Inherit Metab Dis 34:529–538

    Article  CAS  PubMed  Google Scholar 

  • Fritschy JM, Harvey RJ, Schwarz G (2008) Gephyrin: where do we stand, where do we go? Trends Neurosci 31:257–264

    Article  CAS  PubMed  Google Scholar 

  • Gorman A, Griffiths R (1994) Sulphur-containing excitatory amino acid-stimulated inositol phosphate formation in primary cultures of cerebellar granule cells is mediated predominantly by N-methyl-D-aspartate receptors. Neuroscience 59:299–308

    Article  CAS  PubMed  Google Scholar 

  • Graf WD, Oleinik OE, Jack RM, Weiss AH, Johnson JL (1998) A homocysteinemia in molybdenum cofactor deficiency. Neurology 51:860–862

    Article  CAS  PubMed  Google Scholar 

  • Gray TA, Nicholls RD (2000) Diverse splicing mechanisms fuse the evolutionarily conserved bicistronic MOCS1A and MOCS1B open reading frames. RNA 6:928–936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hänzelmann P, Schindelin H (2004) Crystal structure of the S-adenosylmethionine-dependent enzyme MoaA and its implications for molybdenum cofactor deficiency in humans. Proc Natl Acad Sci U S A 101:12870–12875

    Article  PubMed Central  PubMed  Google Scholar 

  • Hänzelmann P, Schwarz G, Mendel RR (2002) Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis. J Biol Chem 277:18303–18312

    Article  PubMed  Google Scholar 

  • Havemeyer A, Bittner F, Wollers S, Mendel R, Kunze T, Clement B (2006) Identification of the missing component in the mitochondrial benzamidoxime prodrug-converting system as a novel molybdenum enzyme. J Biol Chem 281:34796–34802

    Article  CAS  PubMed  Google Scholar 

  • Hildebrandt TM, Grieshaber MK (2008) Three enzymatic activities catalyze the oxidation of sulfide to thiosulfate in mammalian and invertebrate mitochondria. FEBS J 275:3352–3361

    Article  CAS  PubMed  Google Scholar 

  • Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816

    Article  CAS  PubMed  Google Scholar 

  • Hitzert MM, Bos AF, Bergman KA, Veldman A, Schwarz G, Santamaria-Araujo JA, Heiner-Fokkema R, Sival DA, Lunsing RJ, Arjune S et al (2012) Favorable outcome in a newborn with molybdenum cofactor type A deficiency treated with cPMP. Pediatrics 130:e1005–e1010

    Article  PubMed  Google Scholar 

  • Ichida K, Matsumura T, Sakuma R, Hosoya T, Nishino T (2001) Mutation of human molybdenum cofactor sulfurase gene is responsible for classical xanthinuria type II. Biochem Biophys Res Commun 282:1194–1200

    Article  CAS  PubMed  Google Scholar 

  • Jahoor F, Jackson A, Gazzard B, Philips G, Sharpstone D, Frazer ME, Heird W (1999) Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate. Am J Physiol 276:E205–E211

    CAS  PubMed  Google Scholar 

  • Johnson JL, Duran M (2001) Molybdenum cofactor deficiency and isolated sulfite oxidase deficiency. In: Scriver C, Beaudet A, Sly W, Valle D (eds) The metabolic and molecular bases of inherited disease. McGraw-Hill, New York, pp 3163–3177

    Google Scholar 

  • Johnson JL, Hainline BE, Rajagopalan KV, Arison BH (1984) The pterin component of the molybdenum cofactor. Structural characterization of two fluorescent derivatives. J Biol Chem 259:5414–5422

    CAS  PubMed  Google Scholar 

  • Johnson JL, Coyne KE, Rajagopalan KV, Van Hove JL, Mackay M, Pitt J, Boneh A (2001) Molybdopterin synthase mutations in a mild case of molybdenum cofactor deficiency. Am J Med Genet 104:169–173

    Article  CAS  PubMed  Google Scholar 

  • Kabil O, Banerjee R (2010) Redox biochemistry of hydrogen sulfide. J Biol Chem 285:21903–21907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kamoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26:243–254

    Article  CAS  PubMed  Google Scholar 

  • Kuper J, Llamas A, Hecht HJ, Mendel RR, Schwarz G (2004) Structure of molybdopterin-bound Cnx1G domain links molybdenum and copper metabolism. Nature 430:803–806

    Article  CAS  PubMed  Google Scholar 

  • Lee H-J, Adham IM, Schwarz G, Kneussel M, Sass J-O, Engel W, Reiss J (2002) Molybdenum cofactor-deficient mice resemble the phenotype of human patients. Hum Mol Genet 11:3309–3317

    Article  CAS  PubMed  Google Scholar 

  • Llamas A, Otte T, Multhaup G, Mendel RR, Schwarz G (2006) The mechanism of nucleotide-assisted molybdenum insertion into molybdopterin. A novel route toward metal cofactor assembly. J Biol Chem 281:18343–18350

    Article  CAS  PubMed  Google Scholar 

  • Maric HM, Mukherjee J, Tretter V, Moss SJ, Schindelin H (2011) Gephyrin-mediated gamma-aminobutyric acid type a and glycine receptor clustering relies on a common binding site. J Biol Chem 286:42105–42114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matthies A, Rajagopalan KV, Mendel RR, Leimkuhler S (2004) Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc Natl Acad Sci U S A 101:5946–5951

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mehta AP, Hanes JW, Abdelwahed SH, Hilmey DG, Hanzelmann P, Begley TP (2013) Catalysis of a new ribose carbon-insertion reaction by the molybdenum cofactor biosyn-thetic enzyme MoaA. Biochemistry 52(7):1134–1136

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mills PB, Footitt EJ, Ceyhan S, Waters PJ, Jakobs C, Clayton PT, Struys EA (2012) Urinary AASA excretion is elevated in patients with molybdenum cofactor deficiency and isolated sulphite oxidase deficiency. J Inherit Metab Dis 35:1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Nam B, Kim H, Choi Y, Lee H, Hong ES, Park JK, Lee KM, Kim Y (2004) Neurologic sequela of hydrogen sulfide poisoning. Ind Health 42:83–87

    Article  PubMed  Google Scholar 

  • Olney JW, Misra CH, de Gubareff T (1975) Cysteine-S-sulfate: brain damaging metabolite in sulfite oxidase deficiency. J Neuropathol Exp Neurol 34:167–177

    Article  CAS  PubMed  Google Scholar 

  • Rees MI, Harvey K, Ward H, White JH, Evans LI, Duguid IC, Hsu CC, Coleman SL, Miller J, Baer K et al (2003) Isoform heterogeneity of the human gephyrin gene (GPHN), binding domains to the glycine receptor and mutation analysis in hyperekplexia. J Biol Chem 278:24688–24696

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Hahnewald R (2011) Molybdenum cofactor deficiency: mutations in GPHN, MOCS1, and MOCS2. Hum Mutat 32:10–18

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Christensen E, Kurlemann G, Zabot M-T, Dorche C (1998a) Genomic structure and mutational spectrum of the bicistronic MOCS1 gene defective in molybdenum cofactor deficiency type A. Hum Genet 103:639–644

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Cohen N, Dorche C, Mandel H, Mendel RR, Stallmeyer B, Zabot MT, Dierks T (1998b) Mutations in a polycistronic nuclear gene associated with molybdenum cofactor deficiency. Nat Genet 20:51–53

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Christensen E, Dorche C (1999a) Molybdenum cofactor deficiency: first prenatal genetic analysis. Prenat Diagn 19:386–388

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Dorche C, Stallmeyer B, Mendel RR, Cohen N, Zabot MT (1999b) Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B. Am J Hum Genet 64:706–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiss J, Gross-Hardt S, Christensen E, Schmidt P, Mendel RR, Schwarz G (2001) A mutation in the gene for the neurotransmitter receptor-clustering protein gephyrin causes a novel form of molybdenum cofactor deficiency. Am J Hum Genet 68:208–213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Reiss J, Bonin M, Schwegler H, Sass JO, Garattini E, Wagner S, Lee HJ, Engel W, Riess O, Schwarz G (2005) The pathogenesis of molybdenum cofactor deficiency, its delay by maternal clearance, and its expression pattern in microarray analysis. Mol Genet Metab 85:12–20

    Article  CAS  PubMed  Google Scholar 

  • Reiss J, Lenz U, Aquaviva-Bourdain C, Joriot-Chekaf S, Mention-Mulliez K, Holder-Espinasse M (2011) A GPHN point mutation leading to molybdenum cofactor deficiency. Clin Genet 80:598–599

    Article  CAS  PubMed  Google Scholar 

  • Reynolds AP, Harkness RA (1991) Urinary thiosulphate/creatinine concentration ratio in hospitalized children. J Inherit Metab Dis 14:938–939

    Article  CAS  PubMed  Google Scholar 

  • Rupar CA, Gillett J, Gordon BA, Ramsay DA, Johnson JL, Garrett RM, Rajagopalan KV, Jung JH, Bacheyie GS, Sellers AR (1996) Isolated sulfite oxidase deficiency. Neuropediatrics 27:299–304

    Article  CAS  PubMed  Google Scholar 

  • Santamaria-Araujo JA, Fischer B, Otte T, Nimtz M, Mendel RR, Wray V, Schwarz G (2004) The tetrahydropyranopterin structure of the sulfur-free and metal-free molybdenum cofactor precursor. J Biol Chem 279:15994–15999

    Article  CAS  PubMed  Google Scholar 

  • Sass JO, Kishikawa M, Puttinger R, Reiss J, Erwa W, Shimizu A, Sperl W (2003) Hypohomocysteinaemia and highly increased proportion of S-sulfonated plasma transthyretin in molybdenum cofactor deficiency. J Inherit Metab Dis 26:80–82

    Article  CAS  PubMed  Google Scholar 

  • Schrader N, Kim EY, Winking J, Paulukat J, Schindelin H, Schwarz G (2004) Biochemical characterization of the high affinity binding between the glycine receptor and gephyrin. J Biol Chem 279:18733–18741

    Article  CAS  PubMed  Google Scholar 

  • Schwarz G, Santamaria-Araujo JA, Wolf S, Lee HJ, Adham IM, Grone HJ, Schwegler H, Sass JO, Otte T, Hanzelmann P et al (2004) Rescue of lethal molybdenum cofactor deficiency by a biosynthetic precursor from Escherichia coli. Hum Mol Genet 13:1249–1255

    Article  CAS  PubMed  Google Scholar 

  • Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847

    Article  CAS  PubMed  Google Scholar 

  • Stallmeyer B, Drugeon G, Reiss J, Haenni AL, Mendel RR (1999) Human molybdopterin synthase gene: identification of a bicistronic transcript with overlapping reading frames. Am J Hum Genet 64:698–705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tan WH, Eichler FS, Hoda S, Lee MS, Baris H, Hanley CA, Grant PE, Krishnamoorthy KS, Shih VE (2005) Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766

    Article  PubMed  Google Scholar 

  • Tiranti V, Viscomi C, Hildebrandt T, Di Meo I, Mineri R, Tiveron C, Levitt MD, Prelle A, Fagiolari G, Rimoldi M et al (2009) Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy. Nat Med 15:200–205

    Article  CAS  PubMed  Google Scholar 

  • Touati G, Rusthoven E, Depondt E, Dorche C, Duran M, Heron B, Rabier D, Russo M, Saudubray JM (2000) Dietary therapy in two patients with a mild form of sulphite oxidase deficiency. Evidence for clinical and biological improvement. J Inherit Metab Dis 23:45–53

    Article  CAS  PubMed  Google Scholar 

  • Townsend DM, Tew KD, Tapiero H (2003) The importance of glutathione in human disease. Biomed Pharmacother 57:145–155

    Article  CAS  PubMed  Google Scholar 

  • Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH (2011) Knockout of the cysteine dioxygenase gene results in severe impairment in taurine synthesis and increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301(4):E668–E684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • van Gennip AH, Stroomer A, Plandsoen WG, Abeling NG (1991) The effect of molybdenum cofactor deficiency on the purine pattern of cerebrospinal fluid. J Inherit Metab Dis 14:364–366

    Article  PubMed  Google Scholar 

  • Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, Yaplito-Lee J, Wong F, Ramsden CA, Reiss J, Cook I et al (2010) Successful treatment of molybdenum cofactor deficiency type A with cPMP. Pediatrics 125:e1249–e1254

    Article  PubMed  Google Scholar 

  • Vijayakumar K, Gunny R, Grunewald S, Carr L, Chong KW, DeVile C, Robinson R, McSweeney N, Prabhakar P (2011) Clinical neuroimaging features and outcome in molybdenum cofactor deficiency. Pediatr Neurol 45:246–252

    Article  PubMed  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    CAS  PubMed  Google Scholar 

  • Wuebbens MM, Rajagopalan KV (1993) Structural characterization of a molybdopterin precursor. J Biol Chem 268:13493–13498

    CAS  PubMed  Google Scholar 

  • Wuebbens MM, Rajagopalan KV (2003) Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis. J Biol Chem 278:14523–14532

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Vincent AS, Halliwell B, Wong KP (2004) A mechanism of sulfite neurotoxicity: direct inhibition of glutamate dehydrogenase. J Biol Chem 279:43035–43045

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günter Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schwarz, G., Veldman, A. (2014). Molybdenum Cofactor Disorders. In: Blau, N., Duran, M., Gibson, K., Dionisi Vici, C. (eds) Physician's Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40337-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40337-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40336-1

  • Online ISBN: 978-3-642-40337-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics