Improved FPTAS for Multi-spin Systems

  • Pinyan Lu
  • Yitong Yin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8096)

Abstract

We design deterministic fully polynomial-time approximation scheme (FPTAS) for computing the partition function for a class of multi-spin systems, extending the known approximable regime by an exponential scale. As a consequence, we have an FPTAS for the Potts models with inverse temperature β up to a critical threshold \(|\beta|=O(\frac{1}{\Delta})\) where Δ is the maximum degree, confirming a conjecture in [10]. We also give an improved FPTAS for a generalization of counting q-colorings, namely the counting list-colorings. As a consequence we have an FPTAS for counting q-colorings in graphs with maximum degree Δ when q ≥ αΔ + 1 for α greater than α* ≈ 2.58071. This is so far the best bound achieved by deterministic approximation algorithms for counting q-colorings. All these improvements are obtained by applying a potential analysis to the correlation decay on computation trees for multi-spin systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bandyopadhyay, A., Gamarnik, D.: Counting without sampling: Asymptotics of the log-partition function for certain statistical physics models. Random Structures & Algorithms 33(4), 452–479 (2008)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Bayati, M., Gamarnik, D., Katz, D., Nair, C., Tetali, P.: Simple deterministic approximation algorithms for counting matchings. In: Proceedings of STOC, pp. 122–127 (2007)Google Scholar
  3. 3.
    Cai, J.-Y., Chen, X.: A decidable dichotomy theorem on directed graph homomorphisms with non-negative weights. In: Proceedings FOCS, pp. 437–446 (2010)Google Scholar
  4. 4.
    Cai, J.-Y., Chen, X., Lu, P.: Graph homomorphisms with complex values: A dichotomy theorem. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 275–286. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Dyer, M., Jerrum, M., Vigoda, E.: Rapidly mixing markov chains for dismantleable constraint graphs. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 68–77. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Dyer, M.E., Frieze, A.M., Hayes, T.P., Vigoda, E.: Randomly coloring constant degree graphs. In: Proceedings of FOCS, pp. 582–589 (2004)Google Scholar
  7. 7.
    Dyer, M.E., Greenhill, C.S.: On markov chains for independent sets. Journal of Algorithms 35(1), 17–49 (2000)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Galanis, A., Štefankovič, D., Vigoda, E.: Inapproximability of the partition function for the anti-ferromagnetic ising and hard-core models. arXiv preprint arXiv:1203.2226 (2012)Google Scholar
  9. 9.
    Galanis, A., Štefankovič, D., Vigoda, E.: Inapproximability for anti-ferromagnetic spin systems in the tree non-uniqueness region. arXiv preprint arXiv:1305.2902 (2013)Google Scholar
  10. 10.
    Gamarnik, D., Katz, D.: Correlation decay and deterministic FPTAS for counting colorings of a graph. Journal of Discrete Algorithms 12, 29–47 (2012)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gamarnik, D., Katz, D., Misra, S.: Strong spatial mixing for list coloring of graphs. arXiv preprint arXiv:1207.1223 (2012)Google Scholar
  12. 12.
    Goldberg, L.A., Martin, R., Paterson, M.: Strong spatial mixing with fewer colors for lattice graphs. SIAM Journal on Computing 35(2), 486 (2005)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Goldberg, L.A., Jerrum, M.: A polynomial-time algorithm for estimating the partition function of the ferromagnetic ising model on a regular matroid. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part I. LNCS, vol. 6755, pp. 521–532. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Goldberg, L.A., Jerrum, M., Paterson, M.: The computational complexity of two-state spin systems. Random Structures & Algorithms 23(2), 133–154 (2003)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hayes, T.P.: Randomly coloring graphs of girth at least five. In: Proceedings of STOC, pp. 269–278 (2003)Google Scholar
  16. 16.
    Jerrum, M.: A very simple algorithm for estimating the number of k-colorings of a low-degree graph. Random Structures & Algorithms 7(2), 157–166 (1995)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Jerrum, M., Sinclair, A.: Polynomial-time approximation algorithms for the ising model. SIAM Journal on Computing 22(5), 1087–1116 (1993)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM 51, 671–697 (2004)MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Li, L., Lu, P., Yin, Y.: Approximate counting via correlation decay in spin systems. In: Proceedings of SODA, pp. 922–940 (2012)Google Scholar
  20. 20.
    Li, L., Lu, P., Yin, Y.: Correlation decay up to uniqueness in spin systems. In: Proceedings of SODA, pp. 67–84 (2013)Google Scholar
  21. 21.
    Luby, M., Vigoda, E.: Approximately counting up to four (extended abstract). In: Proceedings of STOC, pp. 682–687 (1997)Google Scholar
  22. 22.
    Restrepo, R., Shin, J., Tetali, P., Vigoda, E., Yang, L.: Improved mixing condition on the grid for counting and sampling independent sets. In: Proceedings of FOCS, pp. 140–149 (2011)Google Scholar
  23. 23.
    Sinclair, A., Srivastava, P., Thurley, M.: Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs. In: Proceedings of SODA, pp. 941–953 (2012)Google Scholar
  24. 24.
    Sly, A.: Uniqueness thresholds on trees versus graphs. The Annals of Applied Probability 18(5), 1897–1909 (2008)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Sly, A.: Computational transition at the uniqueness threshold. In: Proceedings of FOCS, pp. 287–296 (2010)Google Scholar
  26. 26.
    Sly, A., Sun, N.: The computational hardness of counting in two-spin models on d-regular graphs. In: Proceedings of FOCS, pp. 361–369 (2012)Google Scholar
  27. 27.
    Vigoda, E.: Improved bounds for sampling coloring. In: Proceedings of FOCS, pp. 51–59 (1999)Google Scholar
  28. 28.
    Weitz, D.: Counting independent sets up to the tree threshold. In: Proceedings of STOC, pp. 140–149 (2006)Google Scholar
  29. 29.
    Yin, Y., Zhang, C.: Approximate counting via correlation decay on planar graphs. In: Proceedings of SODA, pp. 47–66 (2013)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pinyan Lu
    • 1
  • Yitong Yin
    • 2
  1. 1.Microsoft Research AsiaChina
  2. 2.State Key Laboratory for Novel Software TechnologyNanjing UniversityChina

Personalised recommendations