Skip to main content

Abstract

We consider Achlioptas processes for k-SAT formulas. That is, we consider semi-random formulas with n variables and m = αn clauses, where each clause is a choice, made on-line, between two or more independent and uniformly random clauses. Our goal is to move the sat/unsat transition, making the density α = m/n at which these formulas become unsatisfiable larger or smaller than the satisfiability threshold α k for uniformly random k-SAT formulas. We show that three choices suffice to raise the threshold for any k ≥ 3, and that two choices suffice for 3 ≤ k ≤ 50. We also show that (assuming the threshold conjecture is true) two choices suffice to lower the threshold for all k ≥ 3, and that (unconditionally) a constant number of choices suffice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D., D’Souza, R., Spencer, J.: Explosive percolation in random networks. Science 323(5920), 1453–1455 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Achlioptas, D., Moore, C.: The asymptotic order of the random k-SAT threshold. In: Proc. 43rd Symposium on Foundations of Computer Science, pp. 779–788 (2002)

    Google Scholar 

  3. Achlioptas, D., Moore, C.: Almost all graphs with average degree 4 are 3-colorable. Journal Computer System Science 67(2), 441–471 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Achlioptas, D., Peres, Y.: The threshold for random k-SAT is 2k (ln 2 − O(k)). In: Proc. 35th STOC, pp. 223–231 (2003)

    Google Scholar 

  5. Bohman, T., Frieze, A.: Avoiding a giant component. Random Struct. Algorithms 19(1), 75–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bohman, T., Kravitz, D.: Creating a giant component. Combinatorics, Probability and Computing 15, 489–511 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chao, M.-T., Franco, J.V.: Probabilistic analysis of two heuristics for the 3-satisfiability problem. SIAM Journal on Computing 15(4), 1106–1118 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chao, M.-T., Franco, J.V.: Probabilistic analysis of a generalization of the unit clause literal selection heuristic for the k-satisfiability problem. Information Science 51, 289–314 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chvatal, V., Reed, B.: Mick Gets Some (the Odds Are on His Side). In: Proc. 33rd FOCS, pp. 620–627 (1992)

    Google Scholar 

  10. Coja-Oghlan, A., Panagiotou, K.: Going after the k-SAT Threshold. To appear in Proc. STOC (2013)

    Google Scholar 

  11. Diaz, J., Kirousis, L., Mitsche, D., Perez, X.: On the satisfiability threshold of formulae with three literals per clause. Theoretical Computer Science 410, 2920–2934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dubois, O., Boufkhad, Y.: A general upper bound for the satisfiability threshold of random r-SAT formulae. Journal of Algorithms 24(2), 395–420 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fernandez de la Vega, W.: Random 2-SAT: results and problems. Theoretical Computer Science 265(1-2), 131–146 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Flaxman, A., Gamarnik, D., Sorkin, G.: Embracing the giant component. Random Structures and Algorithms 27(3), 277–289 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Friedgut, E.: Sharp thresholds of graph properties, and the k-SAT problem. Journal of the American Mathematical Society 12(4), 1017–1054 (1999); Appendix by Bourgain, J.

    Google Scholar 

  16. Goerdt, A.: A Threshold for Unsatisfiability. Journal of Computer and System Sciences, 469–486 (1996)

    Google Scholar 

  17. Taghi Hajiaghayi, M., Sorkin, G.: The satisfiability threshold of random 3-SAT is at least 3.52. IBM Research Report RC22942 (2003)

    Google Scholar 

  18. Kalapala, V., Moore, C.: The Phase Transition in Exact Cover. Chicago Journal of Theoretical Computer Science 5 (2008)

    Google Scholar 

  19. Kaporis, A., Kirousis, L., Lalas, E.: The probabilistic analysis of a greedy satisfiability algorithm. Random Struct. Algorithms 28(4), 444–480 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kirousis, L.M., Kranakis, E., Krizanc, D., Stamatiou, Y.C.: Approximating the unsatisfiability threshold of random formulas. Random Struct. Algorithms 12(3), 253–269 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mertens, S., Mézard, M., Zecchina, R.: Threshold values of random K-SAT from the cavity method. Random Structures & Algorithms 28, 340–373 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Moore, C., Mertens, S.: The Nature of Computation. Oxford University Press (2011)

    Google Scholar 

  23. Mezard, M., Montanari, A.: Information, Physics and Computation. Oxford Graduate Texts (2009)

    Google Scholar 

  24. Mezard, M., Zecchina, R.: Random K-satisfiability problem: From an analytic solution to an efficient algorithm. Physical Review E 66, 056126, 1–26 (2002)

    Google Scholar 

  25. Mitchell, D., Selman, B., Levesque, H.: Hard and easy distributions of SAT problems. In: Proc. 10th. National Conference on Artificial Intelligence (AAAI), pp. 459–465 (1992)

    Google Scholar 

  26. Mossel, E., Sen, A.: Branching process approach for the 2-SAT threshold. Journal of Applied Probability 47(3), 796–810 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Perkins, W.: Random K-SAT and the power of two choices. arXIv:1209.5313v1 (September 2012)

    Google Scholar 

  28. Riordan, O., Wanke, L.: Achlioptas process phase transition are continuous. Annals of Applied Probability 22(4), 1450–1464 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Sinclair, A., Vilenchik, D.: Delaying Satisfiability for Random 2SAT. In: Serna, M., Shaltiel, R., Jansen, K., Rolim, J. (eds.) APPROX and RANDOM 2010. LNCS, vol. 6302, pp. 710–723. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Spencer, J., Wormald, N.: Birth Control for Giants. Combinatorica 27, 587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Verhoeven, N.C.: Random 2-SAT and unsatisfiability. Information Professing Letters 72(3-4), 119–124 (2000)

    Article  MathSciNet  Google Scholar 

  32. Wormald, N.C.: Differential equations for random processes and random graphs. Annals of Applied Probability 5, 1217–1235 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dani, V., Diaz, J., Hayes, T., Moore, C. (2013). The Power of Choice for Random Satisfiability. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics