Skip to main content

Small-Bias Sets for Nonabelian Groups

Derandomizations of the Alon-Roichman Theorem

  • Conference paper
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX 2013, RANDOM 2013)

Abstract

In analogy with ε-biased sets over \({\mathbb Z}_2^n\), we construct explicit ε-biased sets over nonabelian finite groups G. That is, we find sets S ⊂ G such that \(\parallel{{\mathbb E}_{x \in S} \rho(x)} \parallel \leq \epsilon\) for any nontrivial irreducible representation ρ. Equivalently, such sets make G’s Cayley graph an expander with eigenvalue |λ| ≤ ε. The Alon-Roichman theorem shows that random sets of size O(log|G| / ε 2) suffice. For groups of the form G = G 1 × ⋯ ×G n , our construction has size poly( max i |G i |, n, ε − 1), and we show that a specific set S ⊂ G n considered by Meka and Zuckerman that fools read-once branching programs over G is also ε-biased in this sense. For solvable groups whose abelian quotients have constant exponent, we obtain ε-biased sets of size (log|G|)1 + o(1) poly(ε − 1). Our techniques include derandomized squaring (in both the matrix product and tensor product senses) and a Chernoff-like bound on the expected norm of the product of independently random operators that may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alon, N., Roichman, Y.: Random Cayley graphs and expanders. Random Structures and Algorithms 5(2), 271–284 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.M.: Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information Theory 38(2), 509–516 (1992)

    Article  MATH  Google Scholar 

  3. Alon, N., Goldreich, O., Håstad, J., Peralta, R.: Simple construction of almost k-wise independent random variables. Random Struct. Algorithms 3(3), 289–304 (1992)

    Article  MATH  Google Scholar 

  4. Ben-Aroya, A., Ta-Shma, A.: Constructing small-bias sets from algebraic-geometric codes. Theory of Computing 9(5), 253–272 (2013)

    Article  MathSciNet  Google Scholar 

  5. Bogdanov, A., Viola, E.: Pseudorandom bits for polynomials. SIAM Journal on Computing 39(6), 2464–2486 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. De, A.: Pseudorandomness for permutation and regular branching programs. In: 2011 IEEE 26th Annual Conference on Computational Complexity (CCC), pp. 221–231 (2011)

    Google Scholar 

  7. Friedl, K., Ivanyos, G., Magniez, F., Santha, M., Sen, P.: Hidden translation and orbit coset in quantum computing. In: Proceedings of the 35th Annual ACM Symposium on Theory of Computing, pp. 1–9 (2003)

    Google Scholar 

  8. Glasby, S.P.: The composition and derived lengths of a soluble group. J. Algebra 120, 406–413 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  9. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8(3), 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Meka, R., Zuckerman, D.: Small-bias spaces for group products. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX and RANDOM 2009. LNCS, vol. 5687, pp. 658–672. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Moore, C., Rockmore, D., Russell, A.: Generic quantum fourier transforms. ACM Transactions on Algorithms 2(4), 707–723 (2006)

    Article  MathSciNet  Google Scholar 

  12. Morgenstern, M.: Existence and explicit constructions of q + 1 regular Ramanujan graphs for every prime power q. Journal of Combinatorial Theory, Series B 62(1), 44–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Naor, J., Naor, M.: Small-bias probability spaces: Efficient constructions and applications. SIAM Journal on Computing 22(4), 838–856 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Illinois Journal of Mathematics 6, 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  15. Rozenman, E., Vadhan, S.: Derandomized squaring of graphs. In: Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX and RANDOM 2005. LNCS, vol. 3624, pp. 436–447. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Wigderson, A., Xiao, D.: Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications. Theory of Computing 4(3), 53–76 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, S., Moore, C., Russell, A. (2013). Small-Bias Sets for Nonabelian Groups. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. APPROX RANDOM 2013 2013. Lecture Notes in Computer Science, vol 8096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40328-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40328-6_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40327-9

  • Online ISBN: 978-3-642-40328-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics