Skip to main content

Influences of Morphology and Doping on the Photoactivity of TiO2 Nanostructures

  • Chapter
  • First Online:
Book cover Structural Nanocomposites

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1247 Accesses

Abstract

Compared to the bulk, the nanoscale provides special characteristics for the functional materials. Moreover, the nanostructural morphology has also distinct influences. Enormous efforts have been devoted to the research of TiO2 material, which has led to many promising applications. Beside the morphology impact, doping of titanium dioxide nanostructures by pristine metal nanoparticles (e.g. Ag, Pt, … etc.) revealed distinct improvement in the photocatalytic activity. Although the doping process can remarkably improve the photoactivity, it has also noticeable influences on the crystal structure. In this chapter, the important parameters affecting the photocatalytic activity of TiO2 are discussed; morphology and silver doping. Also, effect of sliver-doping on the crystal structure and the nanofibrous morphology is investigated. Moreover, the influence of the temperature on the photodegradation process using Ag-doped TiO2 nanostructures will be addressed. Two morphologies were introduced; nanoparticles and nanofibers. The nanofibers were synthesized by electrospinning of a sol–gel consisting of titanium isopropoxide, silver nitrate and poly(vinyl acetate). The silver nitrate amount was changed to produce nanofibers having different silver contents. The nanoparticles were prepared from the same sol-gels, however instead of spinning the gels were dried, grinded and sintered. The experimental and analytical studies indicate that doping by silver reveals to form anatase and rutile when the silver nitrate content in the mother solution was more than 3 wt%. The rutile phase content is directly proportional with the AgNO3 concentration. Negative impact of the silver-doping on the nanofibrous morphology was observed as increase the silver content caused to decrease the aspect ratio, i.e. producing nanorods rather nanofibers. However, silver-doping leads to modify the surface roughness. In contrast to the known influence of the temperature on the chemical reactions, in case of the nanofibrous morphology of Ag-doped TiO2, the temperature has negative impact on the photoactivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karunakaran, C., Abiramasundari, G., Gomathisankar, P., Manikandan, G., Anandi, V.: Cu-doped TiO2 nanoparticles for photocatalytic disinfection of bacteria under visible light. J. Colloid Interface Sci. 352, 68–74 (2010)

    Article  Google Scholar 

  2. Ou, H.-H., Lo, S.-L.: Effect of Pt/Pd-doped TiO2 on the photocatalytic degradation of trichloroethylene. J. Mol. Catal. A: Chem. 275, 200–205 (2007)

    Article  Google Scholar 

  3. Vorontsov, A., Stoyanova, I., Kozlov, D., Simagina, V., Savinov, E.: Kinetics of the photocatalytic oxidation of gaseous acetone over platinized titanium dioxide. J. Catal. 189, 360–369 (2000)

    Article  Google Scholar 

  4. Li, F., Li, X.: The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere 48, 1103–1111 (2002)

    Article  Google Scholar 

  5. Kanjwal, M.A., Barakat, N.A.M., Sheikh, F.A., Khil, M.S., Kim, H.Y.: Functionalization of electrospun titanium oxide nanofibers with silver nanoparticles: strongly effective photocatalyst. Int. J. Appl. Ceram. Technol. 7, E54–E63 (2010)

    Article  Google Scholar 

  6. Li, X., Li, F.: Study of Au/Au3+−TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 35, 2381–2387 (2001)

    Article  Google Scholar 

  7. Tian, Y., Tatsuma, T.: Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. JACS 127, 7632–7637 (2005)

    Article  Google Scholar 

  8. Haynes, C.L., Van Duyne, R.P.: Plasmon-sampled surface-enhanced Raman excitation spectroscopy. J. Phys. Chem. B 107, 7426–7433 (2003)

    Article  Google Scholar 

  9. Hodak, J.H., Martini, I., Hartland, G.V.: Spectroscopy and dynamics of nanometer-sized noble metal particles. J. Phys. Chem. B 102, 6958–6967 (1998)

    Article  Google Scholar 

  10. Zhao, G., Kozuka, H., Yoko, T.: Sol—gel preparation and photoelectrochemical properties of TiO2 films containing Au and Ag metal particles. Thin Solid Films 277, 147–154 (1996)

    Article  Google Scholar 

  11. Sung-Suh, H.M., Choi, J.R., Hah, H.J., Koo, S.M., Bae, Y.C.: Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J. Photochem. Photobiol., A 163, 37–44 (2004)

    Google Scholar 

  12. Wu, T., Liu, G., Zhao, J., Hidaka, H., Serpone, N.: Photoassisted degradation of dye pollutants. V. Self-photosensitized oxidative transformation of rhodamine B under visible light irradiation in aqueous TiO2 dispersions. J. Phys. Chem. B 102, 5845–5851 (1998)

    Article  Google Scholar 

  13. Sobana, N., Muruganadham, M., Swaminathan, M.: Nano-Ag particles doped TiO2 for efficient photodegradation of Direct azo dyes. J. Mol. Catal. A: Chem. 258, 124–132 (2006)

    Article  Google Scholar 

  14. Arabatzis, I., Stergiopoulos, T., Bernard, M., Labou, D., Neophytides, S., Falaras, P.: Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange. Appl. Catal., B 42, 187–201 (2003)

    Article  Google Scholar 

  15. Herrmann, J.M., Tahiri, H., Ait-Ichou, Y., Lassaletta, G., Gonzalez-Elipe, A., Fernandez, A.: Characterization and photocatalytic activity in aqueous medium of TiO2 and Ag-TiO2 coatings on quartz. Appl. Catal., B 13, 219–228 (1997)

    Article  Google Scholar 

  16. Damm, C., Israel, G.: Photoelectric properties and photocatalytic activity of silver-coated titanium dioxides. Dyes Pigm. 75, 612–618 (2007)

    Article  Google Scholar 

  17. Shie, J.L., Lee, C.H., Chiou, C.S., Chang, C.T., Chang, C.C., Chang, C.Y.: Photodegradation kinetics of formaldehyde using light sources of UVA, UVC and UVLED in the presence of composed silver titanium oxide photocatalyst. J. Hazard. Mater. 155, 164–172 (2008)

    Article  Google Scholar 

  18. He, X., Zhao, X., Liu, B.: The synthesis and kinetic growth of anisotropic silver particles loaded on TiO2 surface by photoelectrochemical reduction method. Appl. Surf. Sci. 254, 1705–1709 (2008)

    Article  Google Scholar 

  19. Barakat, N.A.M., Abadir, M.F., Nam, K.T., Hamza, A.M., Al-Deyab, S.S., Al-Deyab, S.S., Baek, W.-i., Kim, H.Y.: Synthesis and film formation of iron-cobalt nanofibers encapsulated in graphite shell: magnetic, electric and optical properties study. J. Mater. Chem. 21, 10957–10964 (2011)

    Article  Google Scholar 

  20. Barakat, N.A.M., Khil, M.S., Sheikh, F.A., Kim, H.Y.: Synthesis and optical properties of two cobalt oxides (CoO and Co3O4) nanofibers produced by electrospinning process. J. Phys. Chem. C 112, 12225–12233 (2008)

    Article  Google Scholar 

  21. Kanjwal, M., Barakat, N., Sheikh, F., Baek, W.-i., Khil, M., Kim, H.: Effects of silver content and morphology on the catalytic activity of silver-grafted titanium oxide nanostructure. Fibers Polym. 11, 700–709 (2010)

    Article  Google Scholar 

  22. Arbiol, J., Cerda, J., Dezanneau, G., Cirera, A., Peiro, F., Cornet, A., Morante, J.: Effects of Nb doping on the TiO2 anatase-to-rutile phase transition. J. Appl. Phys. 92, 853–861 (2002)

    Article  Google Scholar 

  23. Li, X., Wang, H., Wu, H.: Phthalocyanines and their analogs applied in dye-sensitized solar cell. Funct Phthalocyanine Mol. Mater. 229–273 (2010)

    Google Scholar 

  24. Hegde, R.R., Dahiya, A., Kamath, M.: Nanofiber nonwovens, June (2005)

    Google Scholar 

  25. Chowdhury, M.M.R.: Electro spinning process nano fiber and their application

    Google Scholar 

  26. Wu, H., Lin, D., Zhang, R., Pan, W.: Facile synthesis and assembly of Ag/NiO nanofibers with high electrical conductivity. Chem. Mater. 19, 1895–1897 (2007)

    Article  Google Scholar 

  27. Doshi, J., Reneker, D.H.: Electrospinning process and applications of electrospun fibers. J. Electrostat. 35, 151–160 (1995)

    Article  Google Scholar 

  28. Shin, Y., Hohman, M., Brenner, M., Rutledge, G.: Experimental characterization of electrospinning: the electrically forced jet and instabilities. Polymer 42, 09955–09967 (2001)

    Article  Google Scholar 

  29. Han, T., Yarin, A.L., Reneker, D.H.: Viscoelastic electrospun jets: Initial stresses and elongational rheometry. Polymer 49, 1651–1658 (2008)

    Article  Google Scholar 

  30. Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-Dimensional Nanostructures: synthesis, characterization, and applications. Adv. Mater. 15, 353–389 (2003)

    Article  Google Scholar 

  31. Law, M., Goldberger, J., Yang, P.: Semiconductor nanowires and nanotubes. Ann. Rev. Mater. Res. 34, 83–122 (2004)

    Article  Google Scholar 

  32. Sun, Y., Khang, D.Y., Hua, F., Hurley, K., Nuzzo, R.G., Rogers, J.A.: Photolithographic route to the fabrication of micro/nanowires of III–V semiconductors. Adv. Funct. Mater. 15, 30–40 (2004)

    Article  Google Scholar 

  33. Li, D., Xia, Y.: Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 16, 1151–1170 (2004)

    Article  Google Scholar 

  34. Reneker, D.H., Chun, I.: Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 7, 216 (1999)

    Article  Google Scholar 

  35. Chronakis, I.S.: Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J. Mater. Process. Technol. 167, 283–293 (2005)

    Article  Google Scholar 

  36. Sheikh, F.A., Barakat, N.A.M., Kanjwal, M.A., Park, S.J., Park, D.K., Kim, H.Y.: Synthesis of poly (vinyl alcohol)(PVA) nanofibers incorporating hydroxyapatite nanoparticles as future implant materials. Macromol. Res. 18, 59–66 (2010)

    Article  Google Scholar 

  37. Kc, R.B., Kim, C.K., Khil, M.S., Kim, H.Y., Kim, I.S.: Synthesis of hydroxyapatite crystals using titanium oxide electrospun nanofibers. Mater. Sci. Eng., C 28, 70–74 (2008)

    Article  Google Scholar 

  38. Aoi, K., Aoi, H., Okada, M.: Synthesis of a poly (vinyl alcohol)-based graft copolymer having poly (ε-caprolactone) side chains by solution polymerization. Macromol. Chem. Phys. 203, 1018–1028 (2002)

    Article  Google Scholar 

  39. Kim, C.H., Khil, M.S., Kim, H.Y., Lee, H.U., Jahng, K.Y.: An improved hydrophilicity via electrospinning for enhanced cell attachment and proliferation. J. Biomed. Mater. Res. B Appl. Biomater. 78, 283–290 (2006)

    Article  Google Scholar 

  40. Tang, Z., Wei, J., Yung, L., Ji, B., Ma, H., Qiu, C., Yoon, K., Wan, F., Fang, D., Hsiao, B.S.: UV-cured poly (vinyl alcohol) ultrafiltration nanofibrous membrane based on electrospun nanofiber scaffolds. J. Membr. Sci. 328, 1–5 (2009)

    Article  Google Scholar 

  41. Chuang, W.Y., Young, T.H., Yao, C.H., Chiu, W.Y.: Properties of the poly (vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro. Biomaterials 20, 1479–1487 (1999)

    Article  Google Scholar 

  42. Lai, Y., Sun, L., Chen, C., Nie, C., Zuo, J., Lin, C.: Optical and electrical characterization of TiO2 nanotube arrays on titanium substrate. Appl. Surf. Sci. 252, 1101–1106 (2005)

    Article  Google Scholar 

  43. Lai, Y., Chen, Y., Zhuang, H., Lin, C.: A facile method for synthesis of Ag/TiO2 nanostructures. Mater. Lett. 62, 3688–3690 (2008)

    Article  Google Scholar 

  44. Xu, M.W., Bao, S.J., Zhang, X.G.: Enhanced photocatalytic activity of magnetic TiO2 photocatalyst by silver deposition. Mater. Lett. 59, 2194–2198 (2005)

    Article  Google Scholar 

  45. Hufschmidt, D., Bahnemann, D., Testa, J.J., Emilio, C.A., Litter, M.I.: Enhancement of the photocatalytic activity of various TiO2 materials by platinisation. J. Photochem. Photobiol., A 148, 223–231 (2002)

    Google Scholar 

  46. Nikolajsen, T., Leosson, K., Bozhevolnyi, S.I.: Surface plasmon polariton based modulators and switches operating at telecom wavelengths. Appl. Phys. Lett. 85, 5833–5835 (2004)

    Article  Google Scholar 

  47. Huang, P., Wu, F., Zhu, B., Gao, X., Zhu, H., Yan, T., Huang, W., Wu, S., Song, D.: CeO2 nanorods and gold nanocrystals supported on CeO2 nanorods as catalyst. J. Phys. Chem. B 109, 19169–19174 (2005)

    Article  Google Scholar 

  48. Zhang, L., Yu, J.C.: A simple approach to reactivate silver-coated titanium dioxide photocatalyst. Catal. Commun. 6, 684–687 (2005)

    Article  Google Scholar 

  49. Herrmann, J.M., Disdier, J., Pichat, P.: Photoassisted platinum deposition on TiO2 powder using various platinum complexes. J. Phys. Chem. 90, 6028–6034 (1986)

    Article  Google Scholar 

  50. Mulvaney, P., Giersig, M., Henglein, A.: Electrochemistry of multilayer colloids: preparation and absorption spectrum of gold-coated silver particles. J. Phys. Chem. 97, 7061–7064 (1993)

    Article  Google Scholar 

  51. Herrmann, J.M.: Termodynamic considerations of strong metal-support interaction in a real PtTiO2 catalyst. J. Catal. 118, 43–52 (1989)

    Article  Google Scholar 

  52. Herrmann, J.M., Disdier, J., Pichat, P.: Effect of chromium doping on the electrical and catalytic properties of powder Titania under UV and visible illumination. Chem. Phys. Lett. 108, 618–622 (1984)

    Article  Google Scholar 

  53. Cozzoli, P.D., Comparelli, R., Fanizza, E., Curri, M.L., Agostiano, A., Laub, D.: Photocatalytic synthesis of silver nanoparticles stabilized by TiO2 nanorods: a semiconductor/metal nanocomposite in homogeneous nonpolar solution. JACS 126, 3868–3879 (2004)

    Article  Google Scholar 

  54. Tian, R., Wang, X., Li, M., Hu, H., Chen, R., Liu, F., Zheng, H., Wan, L.: An efficient route to functionalize singe-walled carbon nanotubes using alcohols. Appl. Surf. Sci. 255, 3294–3299 (2008)

    Article  Google Scholar 

  55. Mai, L., Wang, D., Zhang, S., Xie, Y., Huang, C., Zhang, Z.: Synthesis and bactericidal ability of Ag/TiO2 composite films deposited on titanium plate. Appl. Surf. Sci. 257, 974–978 (2010)

    Article  Google Scholar 

  56. Marques, H., Canário, A., Moutinho, A., Teodoro, O.: Work function changes in the Ag deposition on TiO2 (110). Vacuum 82, 1425–1427 (2008)

    Article  Google Scholar 

  57. Barakat, N.A.M., Kanjwal, M.A., Al-Deyab, S.S., Chronakis, I.S., Kim, H.Y.: Influences of silver-doping on the crystal structure, morphology and photocatalytic activity of TiO2 nanofibers. Mater. Sci. Appl. 2 (2011)

    Google Scholar 

  58. Barakat, N.A.M., Kim, B., Park, S.J., Jo, Y., Jung, M.-H., Kim, H.Y.: Cobalt nanofibers encapsulated in a graphite shell by an electrospinning process. J. Mater. Chem. 19, 7371–7378 (2009)

    Article  Google Scholar 

  59. Barakat, N.A.M., Woo, K.-D., Kanjwal, M.A., Choi, K.E., Khil, M.S., Kim, H.Y.: Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique. Langmuir 24, 11982–11987 (2008)

    Article  Google Scholar 

  60. Barakat, N.A.M., Hamza, A., Al-Deyab, S.S., Qurashi, A., Kim, H.Y.: Titanium-based polymeric electrospun nanofiber mats as a novel organic semiconductor. Mater. Sci. Eng., B (2011)

    Google Scholar 

  61. Barakat, N.A.M., Shaheer Akhtar, M., Yousef, A., El-Newehy, M., Kim, H.Y.: Pd-Co-doped carbon nanofibers with photoactivity as effective counter electrodes for DSSCs. Chem. Eng. J. (2012)

    Google Scholar 

  62. Ding, B., Kim, C.K., Kim, H.Y., Seo, M.K., Park, S.J.: Titanium dioxide nanofibers prepared by using electrospinning method. Fibers Polym. 5, 105–109 (2004)

    Article  Google Scholar 

  63. Xiao, Q., Zhang, J., Xiao, C., Tan, X.: Photocatalytic decolorization of methylene blue over Zn1−xCoxO under visible light irradiation. Mater. Sci. Eng., B 142, 121–125 (2007)

    Google Scholar 

  64. Mascolo, G., Comparelli, R., Curri, M., Lovecchio, G., Lopez, A., Agostiano, A.: Photocatalytic degradation of methyl red by TiO2: comparison of the efficiency of immobilized nanoparticles versus conventional suspended catalyst. J. Hazard. Mater. 142, 130–137 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Ministry of Education, Science Technology (MEST) and National Research Foundation of Korea (NRF) through the Human Resource Training Project for Regional Innovation and “Leaders in Industry-University Cooperation”. We thank Mr. T. S. Bae and J. C. Lim, KBSI, Jeonju branch, and Mr. Jong- Gyun Kang, Centre for University Research Facility, for taking high-quality FESEM and TEM images, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasser A. M. Barakat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barakat, N.A.M., Kanjwal, M.A. (2013). Influences of Morphology and Doping on the Photoactivity of TiO2 Nanostructures. In: Njuguna, J. (eds) Structural Nanocomposites. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40322-4_5

Download citation

Publish with us

Policies and ethics