Abstract
We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorthmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with boolean matrices with prescribed row and column sums within simply exponential multiplicative factor. This new algorithm is a particular instance of new polynomial time deterministic algorithms related to the multiple partial differentiation of polynomials given by evaluation oracles.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Schrijver, A.: Bounds on permanents, and the number of 1-factors and 1-factorizations of bipartite graphs. In: Surveys in Combinatorics (Southampton, 1983). London Math. Soc. Lecture Note Ser., vol. 82, pp. 107–134. Cambridge Univ. Press, Cambridge (1983)
Schrijver, A.: Counting 1-factors in regular bipartite graphs. Journal of Combinatorial Theory, Series B 72, 122–135 (1998)
Laurent, M., Schrijver, A.: On Leonid Gurvits’ proof for permanents. Amer. Math. Monthly 117(10), 903–911 (2010)
Gurvits, L.: Van der Waerden/Schrijver-Valiant like conjectures and stable (aka hyperbolic) homogeneous polynomials: one theorem for all. Electronic Journal of Combinatorics 15 (2008)
Gurvits, L.: A polynomial-time algorithm to approximate the mixed volume within a simply exponential factor. Discrete Comput. Geom. 41(4), 533–555 (2009)
Gurvits, L.: Combinatorial and algorithmic aspects of hyperbolic polynomials (2004), http://xxx.lanl.gov/abs/math.CO/0404474
Gurvits, L.: Unleashing the power of Schrijver’s permanental inequality with the help of the Bethe Approximation (2011), http://arxiv.org/abs/1106.2844
Gurvits, L.: On multivariate Newton-like inequalities. In: Advances in Combinatorial Mathematics, pp. 61–78. Springer, Berlin (2009), http://arxiv.org/pdf/0812.3687v3.pdf
Egorychev, G.P.: The solution of van der Waerden’s problem for permanents. Advances in Math. 42, 299–305 (1981)
Falikman, D.I.: Proof of the van der Waerden’s conjecture on the permanent of a doubly stochastic matrix. Mat. Zametki 29(6), 931–938, 957 (1981) (in Russian)
Gurvits, L.: Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications. In: Proc. 38 ACM Symp. on Theory of Computing (StOC 2006), pp. 417–426. ACM, New York (2006)
Greenhill, C., McKay, B.D., Wang, X.: Asymptotic enumeration of sparse 0-1 ma- trices with irregular row and column sums. Journal of Combinatorial Theory. Series A 113, 291–324 (2006)
Greenhill, C., McKay, B.D.: Random dense bipartite graphs and directed graphs with specified degrees. Random Structures and Algorithms 35, 222–249 (2009)
Barvinok, A.: On the number of matrices and a random matrix with prescribed row and column sums and 0-1 entries. Adv. Math. 224(1), 316–339 (2010)
Everett, C.J., Stein, P.R.: The asymptotic number of integer stochastic matrices. Discrete Math. 1(1), 55–72 (1971/1972)
McKay, B.D.: Asymptotics for 0-1 matrices with prescribed line sums. In: Enumeration and Design, pp. 225–238. Academic Press, Canada (1984)
Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canad. J. Math. 6, 347–352 (1954)
Vishnoi, N.K.: A Permanent Approach to the Traveling Salesman Problem. In: FOCS 2012, pp. 76–80 (2012)
Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM 51, 671–697 (2004)
Hwang, S.G.: Matrix Polytope and Speech Security Systems. Korean J. CAM. 2(2), 3–12 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gurvits, L. (2013). A Note on Deterministic Poly-Time Algorithms for Partition Functions Associated with Boolean Matrices with Prescribed Row and Column Sums. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_45
Download citation
DOI: https://doi.org/10.1007/978-3-642-40313-2_45
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40312-5
Online ISBN: 978-3-642-40313-2
eBook Packages: Computer ScienceComputer Science (R0)