Skip to main content

A Note on Deterministic Poly-Time Algorithms for Partition Functions Associated with Boolean Matrices with Prescribed Row and Column Sums

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

  • 1434 Accesses

Abstract

We prove a new efficiently computable lower bound on the coefficients of stable homogeneous polynomials and present its algorthmic and combinatorial applications. Our main application is the first poly-time deterministic algorithm which approximates the partition functions associated with boolean matrices with prescribed row and column sums within simply exponential multiplicative factor. This new algorithm is a particular instance of new polynomial time deterministic algorithms related to the multiple partial differentiation of polynomials given by evaluation oracles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Schrijver, A.: Bounds on permanents, and the number of 1-factors and 1-factorizations of bipartite graphs. In: Surveys in Combinatorics (Southampton, 1983). London Math. Soc. Lecture Note Ser., vol. 82, pp. 107–134. Cambridge Univ. Press, Cambridge (1983)

    Google Scholar 

  2. Schrijver, A.: Counting 1-factors in regular bipartite graphs. Journal of Combinatorial Theory, Series B 72, 122–135 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Laurent, M., Schrijver, A.: On Leonid Gurvits’ proof for permanents. Amer. Math. Monthly 117(10), 903–911 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Gurvits, L.: Van der Waerden/Schrijver-Valiant like conjectures and stable (aka hyperbolic) homogeneous polynomials: one theorem for all. Electronic Journal of Combinatorics 15 (2008)

    Google Scholar 

  5. Gurvits, L.: A polynomial-time algorithm to approximate the mixed volume within a simply exponential factor. Discrete Comput. Geom. 41(4), 533–555 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gurvits, L.: Combinatorial and algorithmic aspects of hyperbolic polynomials (2004), http://xxx.lanl.gov/abs/math.CO/0404474

  7. Gurvits, L.: Unleashing the power of Schrijver’s permanental inequality with the help of the Bethe Approximation (2011), http://arxiv.org/abs/1106.2844

  8. Gurvits, L.: On multivariate Newton-like inequalities. In: Advances in Combinatorial Mathematics, pp. 61–78. Springer, Berlin (2009), http://arxiv.org/pdf/0812.3687v3.pdf

    Chapter  Google Scholar 

  9. Egorychev, G.P.: The solution of van der Waerden’s problem for permanents. Advances in Math. 42, 299–305 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Falikman, D.I.: Proof of the van der Waerden’s conjecture on the permanent of a doubly stochastic matrix. Mat. Zametki 29(6), 931–938, 957 (1981) (in Russian)

    Google Scholar 

  11. Gurvits, L.: Hyperbolic polynomials approach to Van der Waerden/Schrijver-Valiant like conjectures: sharper bounds, simpler proofs and algorithmic applications. In: Proc. 38 ACM Symp. on Theory of Computing (StOC 2006), pp. 417–426. ACM, New York (2006)

    Google Scholar 

  12. Greenhill, C., McKay, B.D., Wang, X.: Asymptotic enumeration of sparse 0-1 ma- trices with irregular row and column sums. Journal of Combinatorial Theory. Series A 113, 291–324 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Greenhill, C., McKay, B.D.: Random dense bipartite graphs and directed graphs with specified degrees. Random Structures and Algorithms 35, 222–249 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Barvinok, A.: On the number of matrices and a random matrix with prescribed row and column sums and 0-1 entries. Adv. Math. 224(1), 316–339 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Everett, C.J., Stein, P.R.: The asymptotic number of integer stochastic matrices. Discrete Math. 1(1), 55–72 (1971/1972)

    Google Scholar 

  16. McKay, B.D.: Asymptotics for 0-1 matrices with prescribed line sums. In: Enumeration and Design, pp. 225–238. Academic Press, Canada (1984)

    Google Scholar 

  17. Tutte, W.T.: A short proof of the factor theorem for finite graphs. Canad. J. Math. 6, 347–352 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vishnoi, N.K.: A Permanent Approach to the Traveling Salesman Problem. In: FOCS 2012, pp. 76–80 (2012)

    Google Scholar 

  19. Jerrum, M., Sinclair, A., Vigoda, E.: A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. Journal of the ACM 51, 671–697 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hwang, S.G.: Matrix Polytope and Speech Security Systems. Korean J. CAM. 2(2), 3–12 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurvits, L. (2013). A Note on Deterministic Poly-Time Algorithms for Partition Functions Associated with Boolean Matrices with Prescribed Row and Column Sums. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics