Skip to main content

On Fixed-Polynomial Size Circuit Lower Bounds for Uniform Polynomials in the Sense of Valiant

  • Conference paper
Mathematical Foundations of Computer Science 2013 (MFCS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8087))

Abstract

We consider the problem of fixed-polynomial lower bounds on the size of arithmetic circuits computing uniform families of polynomials. Assuming the Generalised Riemann Hypothesis (GRH), we show that for all k, there exist polynomials with coefficients in MA having no arithmetic circuits of size O(n k) over ℂ (allowing any complex constant). We also build a family of polynomials that can be evaluated in AM having no arithmetic circuits of size O(n k). Then we investigate the link between fixed-polynomial size circuit bounds in the Boolean and arithmetic settings. In characteristic zero, it is proved that NP \(\not\subset\) size(n k), or MA ⊂ size(n k), or NP = MA imply lower bounds on the circuit size of uniform polynomials in n variables from the class VNP over ℂ, assuming GRH. In positive characteristic p, uniform polynomials in VNP have circuits of fixed-polynomial size if and only if both VP = VNP over \(\mathbb{F}_p\) and Mod p P has circuits of fixed-polynomial size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baur, W., Strassen, V.: The complexity of partial derivatives. Theor. Comput. Sci. 22, 317–330 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bürgisser, P.: Completeness and reduction in algebraic complexity theory. Algorithms and Computation in Mathematics, vol. 7. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  3. Fortnow, L., Santhanam, R., Williams, R.: Fixed-polynomial size circuit bounds. In: IEEE Conference on Computational Complexity, pp. 19–26 (2009)

    Google Scholar 

  4. Hemaspaandra, L.A., Ogihara, M.: The complexity theory companion. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2002)

    Book  MATH  Google Scholar 

  5. Hrubes, P., Yehudayoff, A.: Arithmetic complexity in ring extensions. Theory of Computing 7(1), 119–129 (2011)

    Article  MathSciNet  Google Scholar 

  6. Jansen, M.J., Santhanam, R.: Stronger lower bounds and randomness-hardness trade-offs using associated algebraic complexity classes. In: STACS, pp. 519–530 (2012)

    Google Scholar 

  7. Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control 55(1-3), 40–56 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  8. Koiran, P.: Hilbert’s Nullstellensatz is in the polynomial hierarchy. J. Complexity 12(4), 273–286 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koiran, P.: Hilbert’s Nullstellensatz is in the polynomial hierarchy. Technical Report 96-27, DIMACS (July 1996)

    Google Scholar 

  10. Lipton, R.J.: Polynomials with 0-1 coefficients that are hard to evaluate. In: FOCS, pp. 6–10 (1975)

    Google Scholar 

  11. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. In: FOCS, pp. 2–10 (1990)

    Google Scholar 

  12. Raz, R.: Elusive functions and lower bounds for arithmetic circuits. Theory of Computing 6(1), 135–177 (2010)

    Article  MathSciNet  Google Scholar 

  13. Santhanam, R.: Circuit lower bounds for merlin–arthur classes. SIAM J. Comput. 39(3), 1038–1061 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Schnorr, C.-P.: Improved lower bounds on the number of multiplications/divisions which are necessary of evaluate polynomials. Theor. Comput. Sci. 7, 251–261 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Strassen, V.: Polynomials with rational coefficients which are hard to compute. SIAM J. Comput. 3(2), 128–149 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Valiant, L.G.: Completeness classes in algebra. In: STOC, pp. 249–261 (1979)

    Google Scholar 

  17. Vinodchandran, N.V.: A note on the circuit complexity of PP. Theor. Comput. Sci. 347(1-2), 415–418 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fournier, H., Perifel, S., de Verclos, R. (2013). On Fixed-Polynomial Size Circuit Lower Bounds for Uniform Polynomials in the Sense of Valiant. In: Chatterjee, K., Sgall, J. (eds) Mathematical Foundations of Computer Science 2013. MFCS 2013. Lecture Notes in Computer Science, vol 8087. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40313-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40313-2_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40312-5

  • Online ISBN: 978-3-642-40313-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics