Skip to main content

Diabetes and Retinal Vascular Disorders

  • Chapter
  • First Online:
Microperimetry and Multimodal Retinal Imaging

Abstract

Diabetic retinopathy and retinal vascular disorders have an important impact on visual function in working age population. Despite the recent progress in the treatment options of these diseases, the visual function loss still occurs. Therefore, there is an increasing need in more precise and adequate morphological and functional characterization of these patients as well as better evaluation of safety and efficacy of the treatments. An integrated morpho-functional approach with noninvasive imaging techniques may help in a more appropriate selection of these patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Global prevalence of diabetes mellitus and its complications (2005) In: Prevention of blindness from diabetes mellitus. WHO Report, Geneva. Accessed on 14 Jan 2006

    Google Scholar 

  2. Anderson JM, Van Itallie CM (1995) Tight junctions and the molecular basis for regulation of paracellular permeability. Am J Physiol 269:G467–G476

    CAS  PubMed  Google Scholar 

  3. Antonetti DA, Barber AJ, Khin S et al (1998) Vascular permeability in experimental diabetes is associated with reduced endothelial occludin content: vascular endothelial growth factor decreases occludin in retinal endothelial cells. Diabetes 47:1953–1959

    Article  CAS  PubMed  Google Scholar 

  4. Lopes de Faria JM, Jalkh AE, Trempe CL et al (1999) Diabetic macular edema: risk factors and concomitants. Acta Ophthalmol Scand 77:170–175

    Article  CAS  PubMed  Google Scholar 

  5. Bhagat N, Grigorian RA, Tutela A et al (2009) Diabetic macular edema: pathogenesis and treatment. Surv Ophthalmol 54:1–32

    Article  PubMed  Google Scholar 

  6. Bresnick GH (1986) Diabetic retinopathy viewed as a neurosensory disorder. Arch Ophthalmol 104:989–990

    Article  CAS  PubMed  Google Scholar 

  7. Barber AJ (2003) A new view of diabetic retinopathy: a neurodegenerative disease of the eye. Prog Neuropsychopharmacol Biol Psychiatry 27:283–290

    Article  CAS  PubMed  Google Scholar 

  8. Midena E, Segato T, Giuliano M et al (1990) Macular recovery function (nyctometry) in diabetics without and with early retinopathy. Br J Ophthalmol 74:106–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Midena E (2006) Fundus perimetry-microperimetry: an introduction. In: Midena E (ed) Perimetry and the fundus: an introduction to microperimetry. Slack Incorporated, Thorofare, pp 1–7

    Google Scholar 

  10. Ewing FM, Deary IJ, Strachan MW et al (1998) Seeing beyond retinopathy in diabetes: electrophysiological and psychophysical abnormalities and alterations in vision. Endocr Rev 19:462–476

    Article  CAS  PubMed  Google Scholar 

  11. Vujosevic S, Midena E (2006) Diabetic retinopathy. In: Midena E (ed) Perimetry and the fundus: an introduction to microperimetry. Slack Incorporated, Thorofare, pp 177–179

    Google Scholar 

  12. Browning DJ, Altaweel MM, Bressler NM et al (2008) Diabetic macular edema: what is focal and what is diffuse? Am J Ophthalmol 146:649–655

    Article  PubMed Central  PubMed  Google Scholar 

  13. Midena E, Vujosevic S (2012) Diagnosing and monitoring diabetic macular edema: structural and functional tests. Int Ophthalmol [Epub ahead of print]

    Google Scholar 

  14. Vujosevic S, Trento B, Bottega E et al (2012) Scanning laser ophthalmoscopy in the retromode in diabetic macular oedema. Acta Ophthalmol 90:374–380

    Article  Google Scholar 

  15. Strøm C, Sander B, Larsen N et al (2002) Diabetic macular edema assessed with optical coherence tomography and stereo fundus photography. Invest Ophthalmol Vis Sci 43:241–245

    PubMed  Google Scholar 

  16. Diabetic Retinopathy Clinical Research Network (2007) Relationship between optical coherence tomography-measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology 114:525–536

    Article  PubMed Central  Google Scholar 

  17. Rohrschneider K, Bültmann S, Glück R et al (2000) Scanning laser ophthalmoscope fundus perimetry before and after laser photocoagulation for clinically significant diabetic macular edema. Am J Ophthalmol 129:27–32

    Article  CAS  PubMed  Google Scholar 

  18. Mori F, Ishiko S, Kitaya N et al (2002) Use of scanning laser ophthalmoscope microperimetry in clinically significant macular edema in type 2 diabetes mellitus. Jpn J Ophthalmol 46:650–655

    Article  PubMed  Google Scholar 

  19. Kube T, Schmidt S, Toonen F et al (2005) Fixation stability and macular light sensitivity in patients with diabetic maculopathy: a microperimetric study with a scanning laser ophthalmoscope. Ophthalmologica 219:16–20

    Article  PubMed  Google Scholar 

  20. Vujosevic S, Midena E, Pilotto E et al (2006) Diabetic macular edema: correlation between microperimetry and optical coherence tomography findings. Invest Ophthalmol Vis Sci 47:3044–3051

    Article  PubMed  Google Scholar 

  21. Okada K, Yamamoto S, Mizunoya S et al (2006) Correlation of retinal sensitivity measured with fundus-related microperimetry to visual acuity and retinal thickness in eyes with diabetic macular edema. Eye 20:805–809

    Article  CAS  PubMed  Google Scholar 

  22. Deak GG, Bolz M, Ritter M et al (2010) A systematic correlation between morphology and functional alterations in diabetic macular edema. Invest Ophthalmol Vis Sci 51:6710–6714

    Article  PubMed  Google Scholar 

  23. Soliman W, Hasler P, Sander B (2012) Local retinal sensitivity in relation to specific retinopathy lesions in diabetic macular oedema. Acta Ophthalmol 90:248–253

    Article  PubMed  Google Scholar 

  24. Nittala MG, Gella L, Raman R (2012) Measuring retinal sensitivity with the microperimeter in patients with diabetes. Retina 32:1302–1309

    PubMed  Google Scholar 

  25. Vujosevic S, Pilotto E, Bottega E et al (2008) Retinal fixation impairment in diabetic macular edema. Retina 10:1443–1450

    Article  Google Scholar 

  26. Unoki N, Nishijima K, Sakamoto A et al (2007) Retinal sensitivity loss and structural disturbance in areas of capillary nonperfusion of eyes with diabetic retinopathy. Am J Ophthalmol 144:755–760

    Article  PubMed  Google Scholar 

  27. Vujosevic S, Casciano M, Pilotto E et al (2011) Diabetic macular edema: fundus autofluorescence and functional correlations. Invest Ophthalmol Vis Sci 52:442–448

    Article  PubMed  Google Scholar 

  28. Xu H, Chen M, Manivannan A et al (2008) Age-dependent accumulation of lipofuscin in perivascular and subretinal microglia in experimental mice. Aging Cell 7:58–68

    Article  CAS  PubMed  Google Scholar 

  29. Vujosevic S, Midena E (2013) Retinal layers changes in human pre-clinical and early clinical diabetic retinopathy supports early retinal neuronal and Müller cells alterations. J Diabetes Res.2013:905058. doi:10.1155/2013/905058. Epub 2013 Jun 12

  30. Møller F, Bek T (2003) The relation between visual acuity, fixation stability, and the size and location of foveal hard exudates after photocoagulation for diabetic maculopathy: a 1-year follow-up study. Graefes Arch Clin Exp Ophthalmol 241:458–462

    Article  PubMed  Google Scholar 

  31. Mori F, Ishiko S, Kitaya N et al (2001) Scotoma and fixation patterns using scanning laser ophthalmoscope microperimetry in patients with macular dystrophy. Am J Ophthalmol 132:897–902

    Article  CAS  PubMed  Google Scholar 

  32. Carpineto P, Ciancaglini M, Di Antonio L et al (2007) Fundus microperimetry patterns of fixation in type 2 diabetic patients with diffuse macular edema. Retina 27:21–29

    Article  PubMed  Google Scholar 

  33. Hatef E, Colantuoni E, Wang J et al (2011) The relationship between macular sensitivity and retinal thickness in eyes with diabetic macular edema. Am J Ophthalmol 152:400–405

    PubMed  Google Scholar 

  34. Midena E, Radin PP, Pilotto E et al (2004) Fixation pattern and macular sensitivity in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. A microperimetry study. Semin Ophthalmol 19:55–61

    Article  PubMed  Google Scholar 

  35. Vujosevic S, Bottega E, Casciano M et al (2010) Microperimetry and fundus autofluorescence in diabetic macular edema: subthreshold micropulse diode laser versus modified early treatment diabetic retinopathy study laser photocoagulation. Retina 30:908–916

    Article  PubMed  Google Scholar 

  36. Vujosevic S, Martini F, Convento E et al (2013) Morphologic and functional effects of diode(810nm) and yellow(577nm) subthreshold micropulse laser in center-involving diabetic macular edema. In: ARVO annual meeting 2013, Seattle

    Google Scholar 

  37. Karacorlu M, Ozdemir H, Senturk F et al (2010) Macular function after intravitreal triamcinolone acetonide injection for diabetic macular oedema. Acta Ophthalmol 88:558–563

    Article  CAS  PubMed  Google Scholar 

  38. Grenga P, Lupo S, Domanico D (2008) Efficacy of intravitreal triamcinolone acetonide in long standing diabetic macular edema: a microperimetry and optical coherence tomography study. Retina 28:1270–1275

    Article  PubMed  Google Scholar 

  39. Rinaldi M, Chiosi F, dell’Omo R et al (2012) Intravitreal pegaptanib sodium (Macugen®) for treatment of diabetic macular oedema: a morphologic and functional study. Br J Clin Pharmacol 74:940–946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Querques G, Bux AV, Martinelli D et al (2009) Short-term fluctuation of diabetic macular edema after intravitreal ranibizumab injection. Retina 29:1274–1281

    Article  PubMed  Google Scholar 

  41. The Branch Vein Occlusion Study Group (1984) Argon laser photocoagulation for macular edema in branch vein occlusion. The Branch Vein Occlusion Study Group. Am J Ophthalmol 98:271–282

    Google Scholar 

  42. Central Vein Occlusion Study Group (1993) Baseline and early natural history report. Arch Ophthalmol 111:1087–1095

    Article  Google Scholar 

  43. Central Vein Occlusion Study Group (1995) Evaluation of grid pattern photocoagulation for macular edema in central retinal vein occlusion. Ophthalmology 102:1425–1433

    Article  Google Scholar 

  44. Hahn P, Fekrat S (2012) Best practices for treatment of retinal vein occlusion. Curr Opin Ophthalmol 23:175–181

    Article  PubMed  Google Scholar 

  45. Chung EJ, Hong YT, Lee SC et al (2008) Prognostic factors for visual outcome after intravitreal bevacizumab for macular edema due to branch retinal vein occlusion. Graefes Arch Clin Exp Ophthalmol 246:1241–1247

    Article  CAS  PubMed  Google Scholar 

  46. Rehak J, Dusek L, Chrapek O et al (2011) Initial visual acuity is an important prognostic factor in patients with branch retinal vein occlusion. Ophthalmic Res 45:204–209

    Article  PubMed  Google Scholar 

  47. Scott IU, VanVeldhuisen PC, Oden NL et al (2011) Standard Care versus Corticosteroid for Retinal Vein Occlusion Study Investigator Group. Baseline predictors of visual acuity and retinal thickness outcomes in patients with retinal vein occlusion: Standard Care Versus Corticosteroid for Retinal Vein Occlusion Study report 10. Ophthalmology 118:345–352

    Article  PubMed Central  PubMed  Google Scholar 

  48. Yamaike N, Tsujikawa A, Sakamoto A et al (2009) Retinal sensitivity after intravitreal injection of bevacizumab for the treatment of macular edema secondary to retinal vein occlusion. Retina 29:757–767

    Article  PubMed  Google Scholar 

  49. Yamaike N, Kita M, Tsujikawa A et al (2007) Perimetric sensitivity with the micro perimeter 1 and retinal thickness in patients with branch retinal vein occlusion. Am J Ophthalmol 143:342–344

    Article  PubMed  Google Scholar 

  50. Noma H, Mimura T, Shimada K (2013) Retinal function and morphology in central retinal vein occlusion with macular edema. Curr Eye Res. 38:143–149

    Google Scholar 

  51. Noma H, Funatsu H, Mimura T et al (2011) Visual function and serous retinal detachment in patients with branch retinal vein occlusion and macular edema: a case series. BMC Ophthalmol 11:29

    Article  PubMed Central  PubMed  Google Scholar 

  52. Tsujikawa A, Sakamoto A, Ota M et al (2010) Serous retinal detachment associated with retinal vein occlusion. Am J Ophthalmol 149:291–301

    Article  PubMed  Google Scholar 

  53. Ogino K, Tsujikawa A, Murakami T et al (2011) Evaluation of macular function using focal macular electroretinography in eyes with macular edema associated with branch retinal vein occlusion. Invest Ophthalmol Vis Sci 52:8047–8055

    Article  PubMed  Google Scholar 

  54. Kriechbaum K, Prager F, Geitzenauer W et al (2009) Association of retinal sensitivity and morphology during antiangiogenic treatment of retinal vein occlusion over one year. Ophthalmology 116:2415–2421

    Article  PubMed  Google Scholar 

  55. Winterhalter S, Lux A, Maier AK et al (2012) Microperimetry as a routine diagnostic test in the follow-up of retinal vein occlusion? Graefes Arch Clin Exp Ophthalmol 250:175–183

    Article  PubMed  Google Scholar 

  56. Noma H, Funatsu H, Mimura T et al (2012) Functional-morphological changes after intravitreal injection of triamcinolone acetonide for macular edema with branch retinal vein occlusion. J Ocul Pharmacol Ther 28:231–236

    Article  CAS  PubMed  Google Scholar 

  57. Senturk F, Ozdemir H, Karacorlu M et al (2010) Microperimetric changes after intravitreal triamcinolone acetonide injection for macular edema due to central retinal vein occlusion. Retina 30:1254–1261

    Article  PubMed  Google Scholar 

  58. Chalam KV, Agarwal S, Gupta SK et al (2007) Recovery of retinal sensitivity after transient branch retinal artery occlusion. Ophthalmic Surg Lasers Imaging 38:328–329

    CAS  PubMed  Google Scholar 

  59. Meyer CH, Callizo J, Schmidt JC et al (2006) Functional and anatomical findings in acute Purtscher’s retinopathy. Ophthalmologica 220:343–346

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stela Vujosevic MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vujosevic, S., Midena, E. (2014). Diabetes and Retinal Vascular Disorders. In: Midena, E. (eds) Microperimetry and Multimodal Retinal Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40300-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40300-2_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40299-9

  • Online ISBN: 978-3-642-40300-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics