Skip to main content

TRPM6 and Hypomagnesaemia/Hypocalcaemia

  • Chapter
  • First Online:
  • 1378 Accesses

Abstract

Magnesium (Mg2+) is an abundant intra- as well as extracellular divalent cation. It is essential for multiple intracellular processes. Its major reservoir is in the bone. Mg2+ homeostasis is regulated by its absorption from the gut and its secretion or reabsorption by the kidneys through specific transcellular and paracellular Mg2+ channels. Derangements in Mg2+ homeostasis may cause elevations (hypermagnesemia) or decrease (hypomagnesemia) in its blood levels, both potentially causing adverse effects, some of them directly ascribed to Mg2+ effects on the nervous as well as the cardiac electrical conduction systems. Most clinical conditions are associated with hypomagnesemia, whereas most cases of hypermagnesemia are asymptomatic. Subclinical hypomagnesemia may cause cardiovascular disease in adults. Other clinical adverse effects derive from the secondary hypocalcemia in cases of severe hypomagnesemia. Different clinical conditions may cause hypomagnesemia, including acquired (such as chronic diarrhea or medications) and genetic. Most affected genes that cause hypomagnesemia are expressed in the nephron’s distal tubule, mainly the thick ascending limb (such as the paracellin/claudin 16 and claudin 19 genes) and distal convoluted tubule segments (such as the thiazide sensitive channel, TRPM6 and the Na–K-ATPase). Mutations in TRPM6, a channel expressed in both the distal tubule as well as in the small intestine cause early (usually in the first months of life) and severe hypomagnesemia with secondary hypocalcemia. Differentiation between the mutated different genes can be initially approached by several clinical as well as laboratory observations (for example: the presence of hypercalciuria, metabolic alkalosis, etc.). The aim of this chapter is to summarize Mg2+ physiology, its handling by kidney and intestine and the clinical syndromes of Mg2+ derangement, concentrating on a crucial protein involved in Mg2+ reabsorption in both kidney and intestine: TRPM6 channel.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Almoznino-Sarafian D, Berman S, Mor A, Shteinshnaider M, Gorelik O, Tzur I, Alon I, Modai D, Cohen N (2007) Magnesium and C-reactive protein in heart failure: an anti-inflammatory effect of magnesium administration? Eur J Nutr 46:230–237

    Article  PubMed  CAS  Google Scholar 

  • Bockenhauer D, Feather S, Stanescu HC, Bandulik S, Zdebik AA, Reichold M, Tobin J, Lieberer E, Sterner C, Landoure G, Arora R, Sirimanna T, Thompson D, Cross JH, van’t Hoff W, Al Masri O, Tullus K, Yeung S, Anikster Y, Klootwijk E, Hubank M, Dillon MJ, Heitzmann D, Arcos-Burgos M, Knepper MA, Dobbie A, Gahl WA, Warth R, Sheridan E, Kleta R (2009) Epilepsy, ataxia, sensorineural deafness,tubulopathy, and KCNJ10 mutations. N Engl J Med 360:1960–1970

    Google Scholar 

  • Cao G, Hoenderop JG, Bindels RJ (2008) Insight into the molecular regulation of the epithelial magnesium channel TRPM6. Curr Opin Nephrol Hypertens 17:373–378

    Article  PubMed  CAS  Google Scholar 

  • Calò L, Punzi L, Semplicini A (2000) Hypomagnesemia and chondrocalcinosis in Bartter’s and Gitelman’s syndrome: review of the pathogenetic mechanisms. Am J Nephrol 20:347–350

    Article  PubMed  Google Scholar 

  • Dyckner T (1980) Serum magnesium in acute myocardial infarction. Relation to arrhythmias. Acta Med Scand 207:59–66

    Article  CAS  Google Scholar 

  • Efrati E, Hirsch A, Kladnitsky O, Rozenfeld J, Kaplan M, Zinder O, Zelikovic I (2010) Transcriptional regulation of the claudin-16 gene by Mg2+ availability. Cell Physiol Biochem 25:705–714

    Article  PubMed  CAS  Google Scholar 

  • Gitelman HJ, Graham JB, Welt LG (1996) A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans Assoc Am Physicians 79:221–235

    Google Scholar 

  • Groenestege WM, Thébault S, van der Wijst J, van den Berg D, Janssen R, Tejpar S, van den Heuvel LP, van Cutsem E, Hoenderop JG, Knoers NV, Bindels RJ (2007) Impaired basolateral sorting of pro-EGF causes isolated recessive renal hypomagnesemia. J Clin Invest 117:2260–2267

    Article  PubMed  CAS  Google Scholar 

  • Guran T, Akcay T, Bereket A, Atay Z, Turan S, Haisch L, Konrad M, Schlingmann KP (2012) Clinical and molecular characterization of Turkish patients with familial hypomagnesaemia: novel mutations in TRPM6 and CLDN16 genes. Nephrol Dial Transplant 27:667–673

    Article  PubMed  CAS  Google Scholar 

  • Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S, Lesslauer A, Vitzthum H, Suzuki Y, Luk JM, Becker C, Schlingmann KP, Schmid M, Rodriguez-Soriano J, Ariceta G, Cano F, Enriquez R, Juppner H, Bakkaloglu SA, Hediger MA, Gallati S, Neuhauss SC, Nurnberg P, Weber S (2006) Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am J Hum Genet 79:949–957

    Article  PubMed  CAS  Google Scholar 

  • Lim P, Jacob E (1972) Magnesium status of alcoholic patients. Metabolism 21:1045–1051

    Article  PubMed  CAS  Google Scholar 

  • May Khan A, Lubitz SA, Sullivan LM, Sun JX, Levy D, Vasan RS, Magnani JW, Ellinor PT, Benjamin EJ, Wang TJ (2012) Low Serum Magnesium and the Development of Atrial Fibrillation in the Community: The Framingham Heart Study. Circulation. Nov 21. [Epub ahead of print]

    Google Scholar 

  • Meij IC, Koenderink JB, van Bokhoven H, Assink KF, Groenestege WT, de Pont JJ, Bindels RJ, Monnens LA, van den Heuvel LP, Knoers NV (2000) Dominant isolated renal magnesium loss is caused by misrouting of the Na(+), K(+) ATPase gamma-subunit. Nat Genet 26:265–266

    Article  PubMed  CAS  Google Scholar 

  • Mihara M, Kamikubo K, Hiramatsu K, Itaya S, Ogawa T, Sakata S (1995) Renal refractoriness to phosphaturic action of parathyroid hormone in a patient with hypomagnesemia. Intern Med 34:666–669

    Article  PubMed  CAS  Google Scholar 

  • Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ (2005) Enhanced passive Ca2 + reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J Clin Invest 115:1651–1658

    Article  PubMed  CAS  Google Scholar 

  • Praga M, Vara J, González-Parra E, Andrés A, Alamo C, Araque A, Ortiz A, Rodicio JL (1995) Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47:1419–1425

    Article  PubMed  CAS  Google Scholar 

  • Quitterer U, Hoffmann M, Freichel M, Lohse MJ (2001) Paradoxical block of parathormone secretion is mediated by increased activity of G alpha subunits. J Biol Chem 276:6763–6769

    Article  PubMed  CAS  Google Scholar 

  • Rondón LJ, Groenestege WM, Rayssiguier Y, Mazur A (2008) Relationship between low magnesium status and TRPM6 expression in the kidney and large intestine. Am J Physiol Regul Integr Comp Physiol 294:R2001–R2007

    Article  PubMed  Google Scholar 

  • Runnels LW (2011) TRPM6 and TRPM7: A Mul-TRP-PLIK-cation of channel functions. Curr Pharm Biotechnol 12:42–53

    Article  PubMed  CAS  Google Scholar 

  • Ryzen E, Nelson TA, Rude RK (1987) Low blood mononuclear cell magnesium content and hypocalcemia in normomagnesemic patients. West J 147:549–553

    CAS  Google Scholar 

  • Schlingmann KP, Sassen MC, Weber S, Pechmann U, Kusch K, Pelken L, Lotan D, Syrrou M, Prebble JJ, Cole DE, Metzger DL, Rahman S, Tajima T, Shu SG, Waldegger S, Seyberth HW, Konrad M (2005) Novel TRPM6 mutations in 21 families with primary hypomagnesemia and secondary hypocalcemia. J Am Soc Nephrol 16:3061–3069

    Article  PubMed  Google Scholar 

  • Schlingmann KP, Weber S, Peters M, Niemann Nejsum L, Vitzthum H, Klingel K, Kratz M, Haddad E, Ristoff E, Dinour D, Syrrou M, Nielsen S, Sassen M, Waldegge S, Seyberth HW, Konrad M (2002) Hypomagnesemia with secondary hypocalcemia is caused by mutations in TRPM6, a new member of the TRPM gene family. Nature Genet 31:166–170

    Google Scholar 

  • Shalev H, Phillip M, Galil A, Carmi R, Landau D (1998) Clinical presentation and outcome in primary familial hypomagnesaemia. Arch Dis Child 78:127–130

    Article  PubMed  CAS  Google Scholar 

  • Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E, Praga M, Casari Bettinelli A, Colussi G, Rodriguez-Soriano J, McCredie D, Milford D, Sanjad S, Lifton RP (1999) Paracellin-1, a renal tight junction protein required for paracellular Mg2 + resorption. Science 285:103–106

    Article  PubMed  CAS  Google Scholar 

  • Tejpar S, Piessevaux H, Claes K, Piront P, Hoenderop JG, Verslype C, Van Cutsem E (2007) Magnesium wasting associated with epidermal-growth-factor receptor-targeting antibodies in colorectal cancer: a prospective study. Lancet Oncol 8:387–394

    Article  PubMed  CAS  Google Scholar 

  • Thongon N, Krishnamra N (2011) Omeprazole decreases magnesium transport across Caco-2 monolayers. World J Gastroenterol 17:1574–1583

    Article  PubMed  CAS  Google Scholar 

  • Walder RY, Landau D, Meyer P, Shalev H, Tsolia M, Borochowitz Z, Boettger MB, Beck GE, Englehardt RK, Carmi R, Sheffield VC (2002) Mutation of TRPM6 causes familial hypomagnesemia with secondary hypocalcemia. Nat Genet 2002:171–174

    Article  Google Scholar 

  • Yamamoto M, Yamaguchi T, Yamauchi M, Yano S, Sugimoto T (2011) Acute-onset hypomagnesemia-induced hypocalcemia caused by the refractoriness of bones and renal tubules to parathyroid hormone. J Bone Miner Metab 29:752–755

    Google Scholar 

  • Zelikovic I, Szargel R, Hawash A, Labay V, Hatib I, Cohen N, Nakhoul FA (2003) novel mutation in the chloride channel gene, CLCNKB, as a cause of Gitelman and Bartter syndromes. Kidney Int 63:24–32

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Landau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Landau, D., Shalev, H. (2014). TRPM6 and Hypomagnesaemia/Hypocalcaemia . In: Weiss, N., Koschak, A. (eds) Pathologies of Calcium Channels. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40282-1_25

Download citation

Publish with us

Policies and ethics