Abstract
Automotive applications based on stereo vision require robust and fast matching algorithms, which makes semi-global matching (SGM) a popular method in this field. Typically the Census transform is used as a cost function, since it is advantageous for outdoor scenes. We propose an extension based on center-symmetric local binary patterns, which allows better efficiency and higher matching quality. Our second contribution exploits knowledge about the three-dimensional structure of the scene to selectively enforce the smoothness constraints of SGM. It is shown that information about surface normals can be easily integrated by weighing the paths according to the gradient of the disparity. The different approaches are evaluated on the KITTI benchmark, which provides real imagery with LIDAR ground truth. The results indicate improved performance compared to state-of-the-art SGM based algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)
Hermann, S., Klette, R.: Iterative semi-global matching for robust driver assistance systems. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 465–478. Springer, Heidelberg (2013)
Gehrig, S.K., Franke, U.: Improving stereo sub-pixel accuracy for long range stereo. In: ICCV, pp. 1–7. IEEE (2007)
Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 134–143. Springer, Heidelberg (2009)
Ernst, I., Hirschmüller, H.: Mutual information based semi-global stereo matching on the GPU. In: Bebis, G., et al. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 228–239. Springer, Heidelberg (2008)
Gehrig, S.K., Rabe, C.: Real-Time Semi-Global Matching on the CPU. In: CVPR Workshops, San Francisco, CA, USA, pp. 85–92 (June 2010)
Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)
Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statistics in mumford-shah based segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 93–108. Springer, Heidelberg (2002)
Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1582–1599 (2009)
Hirschmüller, H., Gehrig, S.K.: Stereo matching in the presence of sub-pixel calibration errors. In: CVPR, pp. 437–444. IEEE (2009)
Zinner, C., Humenberger, M., Ambrosch, K., Kubinger, W.: An optimized software-based implementation of a census-based stereo matching algorithm. In: Bebis, G., et al. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 216–227. Springer, Heidelberg (2008)
Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42(3), 425–436 (2009)
Meena, K., Suruliandi, A.: Local binary patterns and its variants for face recognition. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 782–786 (June 2011)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (July)
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR, pp. 3354–3361. IEEE (2012)
Banz, C., Pirsch, P., Blume, H.: Evaluation of penalty functions for semi-global matching cost aggregation. ISPRS XXXIX-B3, 1–6 (2012)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Spangenberg, R., Langner, T., Rojas, R. (2013). Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-40246-3_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40245-6
Online ISBN: 978-3-642-40246-3
eBook Packages: Computer ScienceComputer Science (R0)