Skip to main content

Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

Abstract

Automotive applications based on stereo vision require robust and fast matching algorithms, which makes semi-global matching (SGM) a popular method in this field. Typically the Census transform is used as a cost function, since it is advantageous for outdoor scenes. We propose an extension based on center-symmetric local binary patterns, which allows better efficiency and higher matching quality. Our second contribution exploits knowledge about the three-dimensional structure of the scene to selectively enforce the smoothness constraints of SGM. It is shown that information about surface normals can be easily integrated by weighing the paths according to the gradient of the disparity. The different approaches are evaluated on the KITTI benchmark, which provides real imagery with LIDAR ground truth. The results indicate improved performance compared to state-of-the-art SGM based algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  2. Hermann, S., Klette, R.: Iterative semi-global matching for robust driver assistance systems. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part III. LNCS, vol. 7726, pp. 465–478. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  3. Gehrig, S.K., Franke, U.: Improving stereo sub-pixel accuracy for long range stereo. In: ICCV, pp. 1–7. IEEE (2007)

    Google Scholar 

  4. Gehrig, S.K., Eberli, F., Meyer, T.: A real-time low-power stereo vision engine using semi-global matching. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815, pp. 134–143. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Ernst, I., Hirschmüller, H.: Mutual information based semi-global stereo matching on the GPU. In: Bebis, G., et al. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 228–239. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Gehrig, S.K., Rabe, C.: Real-Time Semi-Global Matching on the CPU. In: CVPR Workshops, San Francisco, CA, USA, pp. 85–92 (June 2010)

    Google Scholar 

  7. Geiger, A., Roser, M., Urtasun, R.: Efficient large-scale stereo matching. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part I. LNCS, vol. 6492, pp. 25–38. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear shape statistics in mumford-shah based segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part II. LNCS, vol. 2351, pp. 93–108. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Hirschmüller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1582–1599 (2009)

    Article  Google Scholar 

  10. Hirschmüller, H., Gehrig, S.K.: Stereo matching in the presence of sub-pixel calibration errors. In: CVPR, pp. 437–444. IEEE (2009)

    Google Scholar 

  11. Zinner, C., Humenberger, M., Ambrosch, K., Kubinger, W.: An optimized software-based implementation of a census-based stereo matching algorithm. In: Bebis, G., et al. (eds.) ISVC 2008, Part I. LNCS, vol. 5358, pp. 216–227. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Heikkilä, M., Pietikäinen, M., Schmid, C.: Description of interest regions with local binary patterns. Pattern Recogn. 42(3), 425–436 (2009)

    Article  MATH  Google Scholar 

  13. Meena, K., Suruliandi, A.: Local binary patterns and its variants for face recognition. In: 2011 International Conference on Recent Trends in Information Technology (ICRTIT), pp. 782–786 (June 2011)

    Google Scholar 

  14. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(7), 971–987 (July)

    Google Scholar 

  15. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: CVPR, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  16. Banz, C., Pirsch, P., Blume, H.: Evaluation of penalty functions for semi-global matching cost aggregation. ISPRS XXXIX-B3, 1–6 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spangenberg, R., Langner, T., Rojas, R. (2013). Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics