3D Mesh Decomposition Using Protrusion and Boundary Part Detection

  • Fattah Alizadeh
  • Alistair Sutherland
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8048)

Abstract

The number of 3D models is growing every day and the segmentation of such models has recently attracted a lot of attention. In this paper we propose a two-phase approach for segmentation of 3D models. We leverage a well-known fact from electrical physics about charge distribution for both initial protruding part extraction and boundary detection. The first phase tries to locate the initial protruding parts, which have higher charge density, while the second phase utilizes the minima rule and an area-based approach to find the boundary in the concave regions. The proposed approach has a great advantage over the similar approach proposed by Wu and Levine [1]; our approach can find boundaries for some joining parts not entirely located in the concave region which is not the case in the work of Wu and Levine. The experimental result on the McGill and SHREC 2007 datasets show promising results for partial matching in 3D model retrieval.

Keywords

3D Model Segmentation Charge Density Minima Rule Model Retrieval 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wu, K., Levine, M.: 3D part segmentation using simulated electrical charge distribu-tions. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(11), 1223–1235 (1997)CrossRefGoogle Scholar
  2. 2.
    Alizadeh, F., Sutherland, A.: A Robust 3D Shape Descriptor Based on the Electrical Charge Distribution. In: Proc. Intl. Conf. on computer vision theory and application, VISAPP 2013, Barcelona, pp. 213–218 (2013)Google Scholar
  3. 3.
    Levy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic tex-ture atlas generation. ACM Trans. Graph. 21(3), 362–371 (2002)CrossRefGoogle Scholar
  4. 4.
    Lior, S., Shalom, S., Shamir, A., Cohen-or, D., Zhang, H.: Contextual part analogies in 3D objects. International Journal of Computer Vision 89(2), 309–326 (2010)Google Scholar
  5. 5.
    Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, S.: Protrusion-oriented 3D mesh segmen-tation. The Visual Computer 26(1), 63–81 (2010)CrossRefGoogle Scholar
  6. 6.
    Guillemin, V., Pollack, A.: Differential topology. Printice-Hall, Englewood Cliffs (1974)MATHGoogle Scholar
  7. 7.
    Lior, S., Shamir, A., Cohen-Or, D.: Consistent mesh partitioning and skeletonisation using the shape diameter function. The Visual Computer 24(4), 249–259 (2008)CrossRefGoogle Scholar
  8. 8.
    Kim, D., Yun, I., Lee, S.: A new shape decomposition scheme for graph-based representa-tion. Pattern Recognition 38(5), 673–689 (2005)CrossRefGoogle Scholar
  9. 9.
    Shamir, A.: A survey on mesh segmentation techniques. Computer Graphics Forum 27(6), 1539–1556 (2008)MATHCrossRefGoogle Scholar
  10. 10.
    Valette, S., Kompatsiaris, I., Strintzis, M.: A polygonal mesh partitioning algorithm based on protrusion conquest for perceptual 3D shape description. In: Workshop Towards Semantic Virtual Environments SVE, pp. 68–76 (2005)Google Scholar
  11. 11.
    Page, D., Koschan, A., Abidi, M.: Perception-based 3D triangle mesh segmentation using fast marching watersheds. In: Proc. Conf. on Computer Vision and Pattern Rec., pp. 27–32 (2003)Google Scholar
  12. 12.
    Lin, H., Liao, H., Lin, J.: Visual salience-guided mesh decomposition. IEEE Transactions on Multimedia 9(1), 46–57 (2007)CrossRefGoogle Scholar
  13. 13.
    Hilaga, M., Shinagawa, Y., Kohmura, T., Kunii, T.: Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH 2001, pp. 203–212 (2001)Google Scholar
  14. 14.
    Mortara, M., Patanè, G., Spagnuolo, M., Falcidieno, B., Rossignac, J.: Blowing bubbles for multi-scale analysis and decomposition of triangle meshes. Algorithmica 38(1) (2003)Google Scholar
  15. 15.
    Sagi, K., Leifman, G., Tal, A.: Mesh segmentation using feature point and core extrac-tion. The Visual Computer 21(8), 649–658 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fattah Alizadeh
    • 1
  • Alistair Sutherland
    • 1
  1. 1.School of ComputingDublin City UniversityDublinIreland

Personalised recommendations