Skip to main content

Robustness of Point Feature Detection

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2013)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 8048))

Included in the following conference series:

Abstract

This paper evaluates 2D feature detection methods with respect to invariance and efficiency properties. The studied feature detection methods are as follows: Speeded Up Robust Features, Scale Invariant Feature Transform, Binary Robust Invariant Scalable Keypoints, Oriented Binary Robust Independent Elementary Features, Features from Accelerated Segment Test, Maximally Stable Extremal Regions, Binary Robust Independent Elementary Features, and Fast Retina Keypoint. A long video sequence of traffic scenes is used for testing these feature detection methods. A brute-force matcher and Random Sample Consensus are used in order to analyse how robust these feature detection methods are with respect to scale, rotation, blurring, or brightness changes. After identifying matches in subsequent frames, RANSAC is used for removing inconsistent matches; remaining matches are taken as correct matches. This is the essence of our proposed evaluation technique. All the experiments use a proposed repeatability measure, defined as the ratio of the numbers of correct matches, and of all keypoints.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast retina keypoint. In: Proc. CVPR, pp. 510–517 (2012)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: Proc. CVPR, pp. 553–560 (2006)

    Google Scholar 

  5. EISATS Website, http://www.mi.auckland.ac.nz/index.php (last visited in April 2013)

  6. Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: IEEE Int. Conf. ICCV, pp. 2548–2555 (2011)

    Google Scholar 

  7. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision 60, 91–110 (2004)

    Article  Google Scholar 

  8. Luo, J., Oubong, G.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Processing, 143–152 (2009)

    Google Scholar 

  9. Martin, A.F., Robert, C.B.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  10. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. BMVC, pp. 384–396 (2002)

    Google Scholar 

  11. OpenCV Documentation, http://www.docs.opencv.org/index.html (last visited in April 2013)

  12. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: Proc. ICCV, pp. 2564–2571 (2011)

    Google Scholar 

  14. Tombari, F., Salti, S., Di Stefano, L.: Performance evaluation of 3D keypoint detectors. Int. J. Computer Vision 102, 198–220 (2013)

    Article  Google Scholar 

  15. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations Trends Computer Graphics Vision 3, 177–280 (2008)

    Article  Google Scholar 

  16. Yu, T.-H., Woodford, O.J., Cipolla, R.: A performance evaluation of volumetric interest point detectors. Int. J. Computer Vision 102, 180–197 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Song, Z., Klette, R. (2013). Robustness of Point Feature Detection. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-40246-3_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-40245-6

  • Online ISBN: 978-3-642-40246-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics