Abstract
This paper evaluates 2D feature detection methods with respect to invariance and efficiency properties. The studied feature detection methods are as follows: Speeded Up Robust Features, Scale Invariant Feature Transform, Binary Robust Invariant Scalable Keypoints, Oriented Binary Robust Independent Elementary Features, Features from Accelerated Segment Test, Maximally Stable Extremal Regions, Binary Robust Independent Elementary Features, and Fast Retina Keypoint. A long video sequence of traffic scenes is used for testing these feature detection methods. A brute-force matcher and Random Sample Consensus are used in order to analyse how robust these feature detection methods are with respect to scale, rotation, blurring, or brightness changes. After identifying matches in subsequent frames, RANSAC is used for removing inconsistent matches; remaining matches are taken as correct matches. This is the essence of our proposed evaluation technique. All the experiments use a proposed repeatability measure, defined as the ratio of the numbers of correct matches, and of all keypoints.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alahi, A., Ortiz, R., Vandergheynst, P.: FREAK: Fast retina keypoint. In: Proc. CVPR, pp. 510–517 (2012)
Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Donoser, M., Bischof, H.: Efficient maximally stable extremal region (MSER) tracking. In: Proc. CVPR, pp. 553–560 (2006)
EISATS Website, http://www.mi.auckland.ac.nz/index.php (last visited in April 2013)
Leutenegger, S., Chli, M., Siegwart, R.Y.: BRISK: Binary robust invariant scalable keypoints. In: IEEE Int. Conf. ICCV, pp. 2548–2555 (2011)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Computer Vision 60, 91–110 (2004)
Luo, J., Oubong, G.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Processing, 143–152 (2009)
Martin, A.F., Robert, C.B.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24, 381–395 (1981)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proc. BMVC, pp. 384–396 (2002)
OpenCV Documentation, http://www.docs.opencv.org/index.html (last visited in April 2013)
Rosten, E., Drummond, T.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)
Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: An efficient alternative to SIFT or SURF. In: Proc. ICCV, pp. 2564–2571 (2011)
Tombari, F., Salti, S., Di Stefano, L.: Performance evaluation of 3D keypoint detectors. Int. J. Computer Vision 102, 198–220 (2013)
Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foundations Trends Computer Graphics Vision 3, 177–280 (2008)
Yu, T.-H., Woodford, O.J., Cipolla, R.: A performance evaluation of volumetric interest point detectors. Int. J. Computer Vision 102, 180–197 (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Song, Z., Klette, R. (2013). Robustness of Point Feature Detection. In: Wilson, R., Hancock, E., Bors, A., Smith, W. (eds) Computer Analysis of Images and Patterns. CAIP 2013. Lecture Notes in Computer Science, vol 8048. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40246-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-642-40246-3_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40245-6
Online ISBN: 978-3-642-40246-3
eBook Packages: Computer ScienceComputer Science (R0)