Advertisement

A Group Based Approach for Path Queries in Road Networks

  • Hossain Mahmud
  • Ashfaq Mahmood Amin
  • Mohammed Eunus Ali
  • Tanzima Hashem
  • Sarana Nutanong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8098)

Abstract

The advancement of mobile technologies and map-based applications enables a user to access a wide variety of location-based services that range from information queries to navigation systems. Due to the popularity of map-based applications among the users, the service provider often requires to answer a large number of simultaneous (or contemporary) queries. Thus, processing queries efficiently on spatial networks (i.e., road networks) have become an important research area in recent years. In this paper, we focus on path queries that find the shortest path between a source and a destination of the user. In particular, we address the problem of finding the shortest paths for a large number of simultaneous path queries in road networks. Traditional systems that consider one query at a time are not suitable for many applications due to high computational and service cost overhead. We propose an efficient group based approach that provides a practical solution with reduced cost. The key concept of our approach is to group queries that share a common travel path and then compute the shortest path for the group. Experimental results show the effectiveness and efficiency of our group based approach.

Keywords

Spatial query processing Road networks Clustering 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Google maps/google earth apis terms of service, http://code.google.com/apis/maps/terms.htm
  2. 2.
    Ali, M.E., Tanin, E., Zhang, R., Kulik, L.: A motion-aware approach for efficient evaluation of continuous queries on 3d object databases. VLDB J. 19(5), 603–632 (2010)CrossRefGoogle Scholar
  3. 3.
    Bast, H., Funke, S., Matijevic, D., Sanders, P., Schultes, D.: In transit to constant time shortest-path queries in road networks. In: ALENEX (2007)Google Scholar
  4. 4.
  5. 5.
    Bullen, P.S.: Handbook of means and their inequalities (1987)Google Scholar
  6. 6.
    Delling, D., Goldberg, A.V., Werneck, R.F.F.: Faster batched shortest paths in road networks. In: ATMOS, pp. 52–63 (2011)Google Scholar
  7. 7.
    Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Efficient K-nearest neighbor search in time-dependent spatial networks. In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) DEXA 2010, Part I. LNCS, vol. 6261, pp. 432–449. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Giannikis, G., Alonso, G., Kossmann, D.: Shareddb: Killing one thousand queries with one stone. PVLDB 5(6), 526–537 (2012)Google Scholar
  10. 10.
    Lee, J.G., Han, J.: Trajectory clustering: A partition-and-group framework. In: SIGMOD, pp. 593–604 (2007)Google Scholar
  11. 11.
    Goldberg, A.V., Harrelson, C.: Computing the shortest path: A search meets graph theory. In: SODA, pp. 156–165 (2005)Google Scholar
  12. 12.
    Goldberg, A.V., Kaplan, H., Werneck3, R.F.: Efficient point-to-point shortest path algorithms. Tech. Report (2005)Google Scholar
  13. 13.
  14. 14.
    Gunturi, V.M.V., Nunes, E., Yang, K., Shekhar, S.: A critical-time-point approach to all-start-time lagrangian shortest paths: A summary of results. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 74–91. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artificial Intelligence 155, 93–146 (1968)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Levandoski, J.J., Mokbel, M.F., Khalefa, M.E.: Preference query evaluation over expensive attributes. In: CIKM, pp. 319–328 (2010)Google Scholar
  17. 17.
    Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., Thrun, S.: Anytime dynamic A*: An anytime, replanning algorithm. In: ICAPS (2005)Google Scholar
  18. 18.
    Mahmud, H., Amin, A.M., Ali, M.E., Hashem, T.: Shared execution of path queries on road networks. CoRR, abs/1210.6746 (2012)Google Scholar
  19. 19.
    Malviya, N., Madden, S., Bhattacharya, A.: A continuous query system for dynamic route planning. In: ICDE, pp. 792–803 (2011)Google Scholar
  20. 20.
  21. 21.
    Nilson, N.J., Hart, P.E.: A formal basis of the heuristic determination of minimum cost paths 4(2), 100–107 (1968)Google Scholar
  22. 22.
    Russell, S., Norvig, P.: Artificial Intelligence a modern approach, 2nd edn. (2006)Google Scholar
  23. 23.
    Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing in spatial databases. In: SIGMOD, pp. 43–54 (2008)Google Scholar
  24. 24.
    Sankaranarayanan, J., Samet, H., Alborzi, H.: Path oracles for spatial networks. PVLDB 2(1), 1210–1221 (2009)Google Scholar
  25. 25.
    Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Terrovitis, M., Bakiras, S., Papadias, D., Mouratidis, K.: Constrained shortest path computation. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 181–199. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Terrovitis, M., Bakiras, S., Papadia, D., Mouratidis, K.: Shortest path and distance queries on road networks: An experimental evaluation. In: PVLDB, pp. 406–417 (2012)Google Scholar
  28. 28.
    Thomsen, J.R., Yiu, M.L., Jensen, C.S.: Effective caching of shortest paths for location-based services. In: SIGMOD, pp. 313–324 (2012)Google Scholar
  29. 29.
    Zhang, D., Chow, C.-Y., Li, Q., Zhang, X., Xu, Y.: SMashQ: spatial mashup framework for k-nn queries in time-dependent road networks. Distributed and Parallel Databases, 259–287 (2013)Google Scholar
  30. 30.
    Zwick, U.: Exact and approximate distances in graphs - A survey. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 33–48. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hossain Mahmud
    • 1
  • Ashfaq Mahmood Amin
    • 1
  • Mohammed Eunus Ali
    • 1
  • Tanzima Hashem
    • 1
  • Sarana Nutanong
    • 2
  1. 1.Bangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Department of Computer ScienceJohns Hopkins UniversityMarylandUSA

Personalised recommendations