User-Contributed Relevance and Nearest Neighbor Queries

  • Christodoulos Efstathiades
  • Dieter Pfoser
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8098)


Novel Web technologies and resulting applications have lead to a participatory data ecosystem that when utilized properly will lead to more rewarding services. In this work, we investigate the case of Location-based Services and specifically of how to improve the typical location-based Point-Of-Interest (POI) request processed as a k-Nearest-Neighbor query. This work introduces Links-of-interest (LOI) between POIs as a means to increase the relevance and overall result quality of such queries. By analyzing user-contributed content in the form of travel blogs, we establish the overall popularity of a LOI, i.e., how frequently the respective POI pair is mentioned in the same context. Our contribution is a query processing method for so-called k-Relevant Nearest Neighbor (k-RNN) queries that considers spatial proximity in combination with LOI information to retrieve close-by and relevant (as judged by the crowd) POIs. Our method is based on intelligently combining indices for spatial data (a spatial grid) and for relevance data (a graph) during query processing. An experimental evaluation using real and synthetic data establishes that our approach efficiently solves the k-RNN problem when compared to existing methods.


Query Processing Synthetic Dataset Query Point Spatial Grid Relevance Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The r*-tree: an efficient and robust access method for points and rectangles. In: Proc. SIGMOD Conf., pp. 322–331 (1990)Google Scholar
  2. 2.
    Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial web objects. PVLDB 3(1-2), 373–384 (2010)Google Scholar
  3. 3.
    Chen, Y.-Y., Suel, T., Markowetz, A.: Efficient query processing in geographic web search engines. In: Proc. SIGMOD Conf., pp. 277–288 (2006)Google Scholar
  4. 4.
    Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1), 337–348 (2009)Google Scholar
  5. 5.
    De Felipe, I., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: Proc. 24th ICDE Conf., pp. 656–665 (2008)Google Scholar
  6. 6.
    Drymonas, E., Pfoser, D.: Geospatial route extraction from texts. In: Proc. 1st Workshop on Data Mining for Geoinformatics, pp. 29–37 (2010)Google Scholar
  7. 7.
    Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58(1), 83–99 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614–656 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Trans. on Database Syst. 24(2), 265–318 (1999)CrossRefGoogle Scholar
  10. 10.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20, 359–392 (1998)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, Z., Lee, K.C.K., Zheng, B., Lee, W.-C., Lee, D., Wang, X.: IR-tree: An efficient index for geographic document search. IEEE Trans. on Knowl. and Data Eng. 23(4), 585–599 (2011)CrossRefGoogle Scholar
  12. 12.
    Liu, Y., Wang, F., Kang, C., Gao, Y., Lu, Y.: Analyzing relatedness by toponym co-occurrences on web pages. Transactions in GIS (to appear, 2013)Google Scholar
  13. 13.
    Martins, B., Silva, M.J., Andrade, L.: Indexing and ranking in geo-ir systems. In: Proc. Geographic Information Retrieval Workshop, pp. 31–34 (2005)Google Scholar
  14. 14.
    Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP operations in spatial data warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient processing of top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 205–222. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Vaid, S., Jones, C.B., Joho, H., Sanderson, M.: Spatio-textual indexing for geographical search on the web. In: Medeiros, C.B., Egenhofer, M., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 218–235. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Zhou, Y., Xie, X., Wang, C., Gong, Y., Ma, W.-Y.: Hybrid index structures for location-based web search. In: Proc. 14th CIKM Conf., pp. 155–162 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christodoulos Efstathiades
    • 1
  • Dieter Pfoser
    • 2
    • 3
  1. 1.Knowledge and Database Systems LaboratoryNational Technical University of AthensGreece
  2. 2.Research Center “Athena”MaroussiGreece
  3. 3.George Mason UniversityFairfaxUSA

Personalised recommendations