Advertisement

Transience Bounds for Distributed Algorithms

  • Bernadette Charron-Bost
  • Matthias Függer
  • Thomas Nowak
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8053)

Abstract

A large variety of distributed systems, like some classical synchronizers, routers, or schedulers, have been shown to have a periodic behavior after an initial transient phase (Malka and Rajsbaum, WDAG 1991). In fact, each of these systems satisfies recurrence relations that turn out to be linear as soon as we consider max-plus or min-plus algebra. In this paper, we give a new proof that such systems are eventually periodic and a new upper bound on the length of the initial transient phase. Interestingly, this is the first asymptotically tight bound that is linear in the system size for various classes of systems. Another significant benefit of our approach lies in the straightforwardness of arguments: The proof is based on an easy convolution lemma borrowed from Nachtigall (Math. Method. Oper. Res. 46) instead of purely graph-theoretic arguments and involved path reductions found in all previous proofs.

Keywords

Destination Node Recurrence Relation Critical Node Critical Graph Initial Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akian, M., Gaubert, S., Walsh, C.: Discrete Max-Plus Spectral Theory. In: Litvinov, G.L., Maslov, V.P. (eds.) Idempotent Mathematics and Mathematical Physics, pp. 53–78. AMS, Providence (2005)CrossRefGoogle Scholar
  2. 2.
    Attiya, H., Gramoli, V., Milani, A.: A Provably Starvation-Free Distributed Directory Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 405–419. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Awerbuch, B.: Complexity of Network Synchronization. J. ACM 32, 804–823 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Barbosa, V.C., Gafni, E.: Concurrency in Heavily Loaded Neighborhood-Constrained Systems. ACM T. Progr. Lang. Sys. 11, 562–584 (1989)CrossRefGoogle Scholar
  5. 5.
    Bouillard, A., Gaujal, B.: Coupling Time of a (max,plus) Matrix. In: Workshop on Max-Plus Algebra at the 1st IFAC Symposium on System Structure and Control. Elsevier, Amsterdam (2001)Google Scholar
  6. 6.
    Busch, C., Tirthapura, S.: Analysis of Link Reversal Routing Algorithms. SIAM J. Comput. 35, 305–326 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chandy, K.M., Misra, J.: The Drinking Philosophers Problem. ACM T. Progr. Lang. Sys. 6, 632–646 (1984)CrossRefGoogle Scholar
  8. 8.
    Charron-Bost, B., Függer, M., Nowak, T.: New Transience Bounds for Long Walks (2012) arXiv:1209.3342 [cs.DM]Google Scholar
  9. 9.
    Charron-Bost, B., Függer, M., Welch, J.L., Widder, J.: Full Reversal Routing as a Linear Dynamical System. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 101–112. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Charron-Bost, B., Függer, M., Welch, J.L., Widder, J.: Partial is Full. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 113–124. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    Cohen, G., Dubois, D., Quadrat, J.-P., Viot, M.: Analyse du comportement périodique de systèmes de production par la théorie des dioïdes. INRIA Research Report 191 (1983)Google Scholar
  12. 12.
    Dubois, D., Stecke, K.E.: Dynamic Analysis of Repetitive Decision-Free Discrete Event Processes: The Algebra of Timed Marked Graphs and Algorithmic Issues. Ann. Oper. Res. 26, 151–193 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Even, S., Rajsbaum, S.: The Use of a Synchronizer Yields Maximum Computation Rate in Distributed Systems. Theor. Comput. Syst. 30, 447–474 (1997)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Gafni, E.M., Bertsekas, D.P.: Asymptotic Optimality of Shortest Path Routing Algorithms. IEEE T. Inform. Theory. 33, 83–90 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Heidergott, B., Olsder, G.J., van der Woude, J.: Max Plus at Work. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  16. 16.
    Malka, Y., Rajsbaum, S.: Analysis of Distributed Algorithms Based on Recurrence Relations. In: Toueg, S., Spirakis, P.G., Kirousis, L. (eds.) WDAG 1991. LNCS, vol. 579, pp. 242–253. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  17. 17.
    Hartmann, M., Arguelles, C.: Transience Bounds for Long Walks. Math. Oper. Res. 24, 414–439 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Nachtigall, K.: Powers of Matrices over an Extremal Algebra with Applications to Periodic Graphs. Math. Method. Oper. Res. 46, 87–102 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Schneider, H., Schneider, M.H.: Max-Balancing Weighted Directed Graphs and Matrix Scaling. Math. Oper. Res. 16, 208–222 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Soto y Koelemeijer, G.: On the Behaviour of Classes of Min-Max-Plus Systems. PhD Thesis, TU Delft (2003)Google Scholar
  21. 21.
    Tirthapura, S., Herlihy, M.: Self-Stabilizing Distributed Queuing. IEEE T. Parall. Distr. 17, 646–655 (2006)CrossRefGoogle Scholar
  22. 22.
    Welch, J.L., Walter, J.E.: Link Reversal Algorithms. Morgan & Claypool, San Rafael (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bernadette Charron-Bost
    • 1
  • Matthias Függer
    • 2
  • Thomas Nowak
    • 1
  1. 1.CNRS, LIXÉcole polytechniqueFrance
  2. 2.ECS GroupTU WienAustria

Personalised recommendations