Symmetry Breaking for Multi-criteria Mapping and Scheduling on Multicores

  • Pranav Tendulkar
  • Peter Poplavko
  • Oded Maler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8053)

Abstract

Multiprocessor mapping and scheduling is a long-old difficult problem. In this work we propose a new methodology to perform mapping and scheduling along with buffer memory optimization using an SMT solver. We target split-join graphs, a formalism inspired by synchronous data-flow (SDF) which provides a compact symbolic representation of data-parallelism. Unlike the traditional design flow for SDF which involves splitting of a big problem into smaller heuristic sub-problems, we deal with this problem as a whole and try to compute exact Pareto-optimal solutions for it. We introduce symmetry breaking constraints in order to reduce the run-times of the solver. We have tested our work on a number of SDF graphs and demonstrated the practicality of our method. We validate our models by running an image decoding application on the Tilera multicore platform.

Keywords

synchronous data-flow multiprocessor multicore mapping scheduling SMT SAT solver 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Scheduling. Kluwer international series in engineering and computer science. Kluwer (2001)Google Scholar
  2. 2.
    Bonfietti, A., Benini, L., Lombardi, M., Milano, M.: An efficient and complete approach for throughput-maximal SDF allocation and scheduling on multi-core platforms. In: DATE, pp. 897–902. IEEE (2010)Google Scholar
  3. 3.
    Coffman, E.G.: Computer and job-shop scheduling theory. Wiley (1976)Google Scholar
  4. 4.
    Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using sparsity of symmetries. DAC, pp. 149–154. ACM, New York (2008)Google Scholar
  5. 5.
    De Micheli, G.: Synthesis and optimization of digital circuits. Electrical and Computer Engineering Series. McGraw-Hill Higher Education (1994)Google Scholar
  6. 6.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. Wiley paperback series. Wiley (2009)Google Scholar
  7. 7.
    Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 81–94. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005)MATHGoogle Scholar
  9. 9.
    van Eijk, C.A.J., Jacobs, E.T.A.F., Mesman, B., Timmer, A.H.: Identification and exploitation of symmetries in DSP algorithms. In: DATE. IEEE, New York (1999)Google Scholar
  10. 10.
    Fradet, P., Girault, A., Poplavko, P.: SPDF: A schedulable parametric data-flow MoC. In: DATE, pp. 769–774. IEEE (2012)Google Scholar
  11. 11.
    Kalray: Kalray MPPA 256, http://www.kalray.eu/
  12. 12.
    Kwok, Y.K., Ahmad, I.: Static scheduling algorithms for allocating directed task graphs to multiprocessors. ACM Comput. Surv. 31(4), 406–471 (1999)CrossRefGoogle Scholar
  13. 13.
    Lee, E., Messerschmitt, D.: Synchronous data flow. IEEE 75(9), 1235–1245 (1987)CrossRefGoogle Scholar
  14. 14.
    Legriel, J., Le Guernic, C., Cotton, S., Maler, O.: Approximating the Pareto front of multi-criteria optimization problems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 69–83. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Legriel, J., Maler, O.: Meeting deadlines cheaply. In: ECRTS, pp. 185–194. IEEE (2011)Google Scholar
  16. 16.
    Melpignano, D., Benini, L., Flamand, E., Jego, B., Lepley, T., Haugou, G., Clermidy, F., Dutoit, D.: Platform 2012, a many-core computing accelerator for embedded SoCs: performance evaluation of visual analytics applications. DAC, pp. 1137–1142. ACM, USA (2012)Google Scholar
  17. 17.
    de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Pareto, V.: Manuel d’économie politique. Bull. Amer. Math. Soc. 18, 462–474 (1912)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ramani, A., Aloul, F., Markov, I., Sakallah, K.: Breaking instance-independent symmetries in exact graph coloring. In: DATE, vol. 1, pp. 324–329. IEEE (2004)Google Scholar
  20. 20.
    Sriram, S., Bhattacharyya, S.: Embedded Multiprocessors: Scheduling and Synchronization, 2nd edn. Signal Processing and Communications. Taylor & Francis (2009)Google Scholar
  21. 21.
    Stuijk, S., Geilen, M., Basten, T.: Exploring trade-offs in buffer requirements and throughput constraints for synchronous dataflow graphs. DAC, pp. 899–904. ACM, USA (2006)Google Scholar
  22. 22.
    Tendulkar, P., Poplavko, P., Maler, O.: Symmetry breaking for multi-criteria mapping and scheduling on multicores. technical report TR-2013-3, Verimag (2013)Google Scholar
  23. 23.
    Thies, W., Amarasinghe, S.: An empirical characterization of stream programs and its implications for language and compiler design. PACT, pp. 365–376. ACM, USA (2010)Google Scholar
  24. 24.
    Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming applications. In: Nigel Horspool, R. (ed.) CC 2002. LNCS, vol. 2304, pp. 179–196. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  25. 25.
    Tilera, LTD: Tilera TILE64 processor, http://www.tilera.com/
  26. 26.
    Yang, Y., Geilen, M., Basten, T., Stuijk, S., Corporaal, H.: Exploring trade-offs between performance and resource requirements for synchronous dataflow graphs. In: ESTImedia, pp. 96–105 (2009)Google Scholar
  27. 27.
    Zhu, J., Sander, I., Jantsch, A.: Buffer minimization of real-time streaming applications scheduling on hybrid CPU/FPGA architectures. DATE, pp. 1506–1511. IEEE, Belgium (2009)Google Scholar
  28. 28.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach. IEEE Transactions on Evolutionary Computation 3(4), 257–271 (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Pranav Tendulkar
    • 1
  • Peter Poplavko
    • 1
  • Oded Maler
    • 1
  1. 1.Verimag (CNRS and University of Grenoble)France

Personalised recommendations